Question

In: Advanced Math

T41(Robert Beezer) Consider the system of linear equations LS(A,b), and suppose that every element of the...

T41(Robert Beezer) Consider the system of linear equations LS(A,b), and suppose that every element of the vector of constants b is a common multiple of the corresponding element of a certain column of A.More precisely, there is a complex numberα, and a column index j, such that [b]i=α[A]ij for all i. Prove that the system is consistent.

Solutions

Expert Solution


Related Solutions

Consider a general system of linear equations with m equations in n variables, called system I....
Consider a general system of linear equations with m equations in n variables, called system I. Let system II be the system obtained from system I by multiplying equation i by a nonzero real number c. Prove that system I and system II are equivalent.
Consider a homogeneous system of linear equations with m equations and n variables. (i) Prove that...
Consider a homogeneous system of linear equations with m equations and n variables. (i) Prove that this system is consistent. (ii) Prove that if m < n then the system has infinitely many solutions. Hint: Use r (the number of pivot columns) of the augmented matrix.
Suppose a system of linear equations has 2 equations and 3 variables. (a) True or False:...
Suppose a system of linear equations has 2 equations and 3 variables. (a) True or False: The system could have no solutions. (b) Produce an example of a system with 2 equations and 3 variables that has no solution, or explain why such a system is impossible.
A linear system of equations Ax=b is known, where A is a matrix of m by...
A linear system of equations Ax=b is known, where A is a matrix of m by n size, and the column vectors of A are linearly independent of each other. Please answer the following questions based on this assumption, please explain all questions, thank you~. (1) Please explain why this system has at most one solution. (2) To give an example, Ax=b is no solution. (3) According to the previous question, what kind of inference can be made to the...
Solve the linear system of equations Ax = b, and give the rank of the matrix...
Solve the linear system of equations Ax = b, and give the rank of the matrix A, where A = 1 1 1 -1 0 1 0 2 1 0 1 1 b = 1 2 3
Consider the system of linear equations: 3? − 5? + 2? = 2 2? − ?...
Consider the system of linear equations: 3? − 5? + 2? = 2 2? − ? + 3? = 3 ? + 4? + 7? = 4 (a) Write the augmented matrix for the above system. (b) Find the inverse of the coefficient matrix. (c) Find the determinant of the coefficient matrix. (d) Find the LU-factorization of the coefficient matrix. (e) Solve the above system using Gauss-Jordan elimination. (f) Use the inverse of the coefficient matrix from part (b) to...
in parts a and b use gaussian elimination to solve the system of linear equations. show...
in parts a and b use gaussian elimination to solve the system of linear equations. show all algebraic steps. a. x1 + x2 + x3 = 2 x1 - x3 = -2 2x2 + x3 = -1 b. x1 + x2 + x3 = 3 3x1 + 4x2 + 2x3 = 4 4x1 + 5x2 + 3x3 = 7 2x1 + 3x2 + x3 = 1
Write a function to solve a system of linear equations of the form Ax= b using...
Write a function to solve a system of linear equations of the form Ax= b using the iterative Gauss-Seidel method. You are free to use any basic MATLAB operation to implement the algorithm (i.e. you may use any combination of loops, indexing, math, etc.), but avoid “built-in” solution methods — you would not be allowed to use the GaussSeidel function if such a function existed. The function must also test for a number of possible issues. If an issue is...
Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2...
Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2 + 7x3 = −34 −8x1 + x2 − 2x3 = −20 With an initial guess x (0) = [0, 0, 0]T solve the system using Gauss-Seidel method.
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 +...
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 + 6x2 + 2x3 = 0 3x1 + 3x2 + 7x3 = 4 i. Use the Gauss-Jacobi iterative technique with x (0) = 0 to find approximate solution to the system above up to the third step ii. Use the Gauss-Seidel iterative technique with x (0) = 0 to find approximate solution to the third step
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT