Question

In: Physics

Light with a wavelength range of 142-295 mm shines on a silicon surface in a photoelectric...

Light with a wavelength range of 142-295 mm shines on a silicon surface in a photoelectric effect apparatus.

-What is the longest wavelength of the light that will eject electrons from the silicon surface?

-With what maximum kinetic energy will electrons reach the anode?

Solutions

Expert Solution


Related Solutions

Red laser light with a wavelength of 633 nm shines on a surface with destructive interference...
Red laser light with a wavelength of 633 nm shines on a surface with destructive interference for that wavelength. The surface will appear: 1. white. 2. violet. 3. red. 4. black.
Laser light of some wavelength λ1 shines on a diffraction grating with 285 lines/mm at normal...
Laser light of some wavelength λ1 shines on a diffraction grating with 285 lines/mm at normal incidence, producing a pattern of maxima on a large screen 1.50 m from the grating. The first principal maximum is observed to be at an angle of 8.20° from the central maximum. (a) Determine the wavelength of the incident light. (b) A second laser of wavelength λ2 is added, and it is observed that the third principal maximum of λ2 is at the same...
In the photoelectric experiment, green light, with a wavelength of 522 nm is the longest-wavelength radiation...
In the photoelectric experiment, green light, with a wavelength of 522 nm is the longest-wavelength radiation that can cause the photoemission ofelectrons from a clean sodium surface. a) What is the work function of sodium, in electron-volts? b) If UV (ultraviolet) radiation of wavelength 250 nm is incident to the sodium surface, whatwill be the kinetic energy of the photoemitted electrons, in electron-volts?
Intense monoenergetic light source shines on piece of metal. When wavelength of the light is more...
Intense monoenergetic light source shines on piece of metal. When wavelength of the light is more than 620 nm, no photoelectrons are emitted from metal, and shorter wavelengths begin to produce a flux of photoelectrons. A 248 nm light source is aimed at the same metal, hitting the metal with a power of 0.75 W. (a) What is the range of energies of photoelectrons produced? (b) The electrons pass through a single slit, with slit width a= 150 nm and...
a) 500 nm light shines through two slits with a width of 0.02 mm and a...
a) 500 nm light shines through two slits with a width of 0.02 mm and a separation of 0.08 mm. List the first two missing orders. b) How many bright spots are contained in the central diffraction maximum? c) What is the width of the central diffraction maximum? d) Find the angle (theta) associated with the first dark spot on the screen.
The photoelectric effect is the emission of electrons from the surface of a conductor when light...
The photoelectric effect is the emission of electrons from the surface of a conductor when light strikes it. Several important features of the photoelectric effect cannot be explained by the classical theory of electromagnetic waves. Briefly explain this phenomenon in terms of intensity, frequency, kinetic energy, and the number of photoelectrons.
Light of wavelength 3.0 × 10−7 m shines on the metals lithium, iron, and mercury
Light of wavelength 3.0 × 10−7 m shines on the metals lithium, iron, and mercury, which have work functions of 2.3 eV, 3.9 eV, and 4.5 eV, respectively. a. Which of these metals will exhibit the photoelectric effect? b. For those metals that do exhibit the photoelectric effect, what is the maximum kinetic energy of the photoelectrons?
In the photoelectric effect experiment, a light photon with a wavelength λ=525 nm hits a metallic...
In the photoelectric effect experiment, a light photon with a wavelength λ=525 nm hits a metallic cesium (work function = 3.43 ×10−34 J).\ What is the kinetic energy of the photoelectron produced?
In Young’s experiment, monochromatic light of wavelength 600 nm shines on two slits separated by 0.3...
In Young’s experiment, monochromatic light of wavelength 600 nm shines on two slits separated by 0.3 mm, producing an interference pattern on a screen that is 2.0 m away. You put a thin sheet of glass (n = 1.5) at the top slit and you observe a dark fringe the central location of the screen. Furthermore, the fourth bright spot on both sides of the central location is missing. (a) Sketch the resulting interference pattern. Precisely state the spacing between...
When light of frequency 7.17x1014 Hz shines on the surface of sodium metal, electrons are ejected...
When light of frequency 7.17x1014 Hz shines on the surface of sodium metal, electrons are ejected with a maximum kinetic energy of 1.10x10-19 J. Calculate:      (a) the wavelength of this light: Answer m b) the binding energy of electrons to sodium metal: Answer J c) the longest wavelength of light that will eject electrons: Answerm In this question please use the following values for the fundamental constants: Planck's constant h=6.626x10-34 Js Speed of light c=2.998x108m/s Give your answer to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT