Question

In: Physics

The photoelectric effect is the emission of electrons from the surface of a conductor when light...

The photoelectric effect is the emission of electrons from the surface of a conductor when light strikes it. Several important features of the photoelectric effect cannot be explained by the classical theory of electromagnetic waves. Briefly explain this phenomenon in terms of intensity, frequency, kinetic energy, and the number of photoelectrons.

Solutions

Expert Solution


Related Solutions

a) Electrons are ejected from a photoelectric surface with a maximum speed of 4.20 x 105...
a) Electrons are ejected from a photoelectric surface with a maximum speed of 4.20 x 105 m/s. If the work function of the metal is 2.55 eV, what is the wavelength of the incident light ? Express your answer in the format of a.bc x 10-d m b) A photoelectric cell is illuminated with white light (wavelengths from 400 nm to 700 nm). What is the maximum kinetic energy (in eV) of the electrons emitted by this surface if its...
A student was performing an experiment to demonstrate the photoelectric effect. When the student shined light...
A student was performing an experiment to demonstrate the photoelectric effect. When the student shined light from the source on the metal surface, no electrons were ejected. Which of the following could explain the observed result? Select one: a. The light intensity was insufficient. b. The energy of the light was too high. c. The frequency of the light was too low. d. The wavelength of the light was too short.
In an experiment on the photoelectric effect, a beam of monochromatic light is aimed at a...
In an experiment on the photoelectric effect, a beam of monochromatic light is aimed at a nickel-plated cathode. A scientist uses mathematical formulas to calculate the maximum speed of the electrons that the cathode releases. Which constant most limits the precision of the calculation? the charge of one electron the mass of an electron the work function of nickel Planck’s constant Which example illustrates a behavior called “photoconductivity”? A metallic film conducts electricity when an electric potential is applied across...
When light with a wavelength of 247 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 247 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 2.84 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.
When light with a wavelength of 215 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 215 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.33 × 10 − 19 J. Determine the wavelength of light that should be used to quadruple the maximum kinetic energy of the electrons ejected from this surface.
Light striking a metal surface causes electrons to be emitted from the metal via the...
Light striking a metal surface causes electrons to be emitted from the metal via the photoelectric effect.In another experiment, the intensity of the incident light and the temperature of the metal are held constant. Assuming that the initial light incident on the metalsurface causes electrons to be ejected from the metal, what happens if the frequency of the incident light is increased?Check all that apply.The work function of the metal increases.The number of electrons emitted from the metal per second...
When light of frequency 7.17x1014 Hz shines on the surface of sodium metal, electrons are ejected...
When light of frequency 7.17x1014 Hz shines on the surface of sodium metal, electrons are ejected with a maximum kinetic energy of 1.10x10-19 J. Calculate:      (a) the wavelength of this light: Answer m b) the binding energy of electrons to sodium metal: Answer J c) the longest wavelength of light that will eject electrons: Answerm In this question please use the following values for the fundamental constants: Planck's constant h=6.626x10-34 Js Speed of light c=2.998x108m/s Give your answer to...
Light with a wavelength range of 142-295 mm shines on a silicon surface in a photoelectric...
Light with a wavelength range of 142-295 mm shines on a silicon surface in a photoelectric effect apparatus. -What is the longest wavelength of the light that will eject electrons from the silicon surface? -With what maximum kinetic energy will electrons reach the anode?
When light of frequency 4.96×1015 s-1 shines on the surface of a metal, electrons are ejected...
When light of frequency 4.96×1015 s-1 shines on the surface of a metal, electrons are ejected with a maximum kinetic energy of 3.88×10-19 J. a) Calculate the wavelength of this light. b) Find the binding energy of electrons to the metal. c) What is the longest wavelength of light that will eject electrons from this metal?
how did the photoelectric effect prove that light had particle properties?
how did the photoelectric effect prove that light had particle properties?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT