Question

In: Physics

Red laser light with a wavelength of 633 nm shines on a surface with destructive interference...

Red laser light with a wavelength of 633 nm shines on a surface with destructive interference for that wavelength. The surface will appear:

1. white.

2. violet.

3. red.

4. black.

Solutions

Expert Solution

The wavelength of light is 316.5 nm.

From the spectrum given below we see that this wavelength does not correspond to visible region (400 nm.- 700 nm).

So,it will not contain any colour out of 7 colour spectra we see in visible region.

The wavelength correspond to UV region.ans it will look black in colour because everything other than the visible region is dard in colour.

So,the correct option is BLACK.

As the wavelength 316.5 nm corresponds to UV region.


Related Solutions

Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated...
Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated by 1.57 ✕ 10−5 m and an interference pattern is observed on a screen 2.10 m from the plane of the slits. 1. find angle from central maximum to first bright fringe 2. at what angle from central maximum does the second dark fringe appear? 3. find the distance (in m) from the central maximum to the first bright fringe.
An argon laser that has a wavelength of 455 nm shines on a double-slit apparatus, which...
An argon laser that has a wavelength of 455 nm shines on a double-slit apparatus, which produces an interference pattern on a screen that is 10.0 m away from the slits. The slit separation distance is 70.0 μm. (a) How many bright fringes are there on the screen within an angle of ±1° relative to the central axis? (b) How many dark fringes are there on the screen within an angle of ±2° relative to the central axis? Be careful...
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon...
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon atoms move from level 5s to level 3p. Given is a tube that contains 0.25 moles of a helium-neon mix, of which 15% are neon atoms. Also given is that while the laser is active, around 2% of the neon atoms are located at one of the two given energy levels at any time. a) what is the difference in energy between levels 5s...
calculate the energy of red light with a wavelength of 703.2 nm
calculate the energy of red light with a wavelength of 703.2 nm
Light from a helium-neon laser (? = 633 nm) is used to illuminate two narrow slits....
Light from a helium-neon laser (? = 633 nm) is used to illuminate two narrow slits. The interference pattern is observed on a screen 3.3m behind the slits. Eleven bright fringes are seen, spanning a distance of 54mm . What is the spacing (in mm) between the slits?
Light with a wavelength range of 142-295 mm shines on a silicon surface in a photoelectric...
Light with a wavelength range of 142-295 mm shines on a silicon surface in a photoelectric effect apparatus. -What is the longest wavelength of the light that will eject electrons from the silicon surface? -With what maximum kinetic energy will electrons reach the anode?
An interference pattern is produced by light with a wavelength 600 nm from a distant source...
An interference pattern is produced by light with a wavelength 600 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.560 mm . If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima? What would be the angular position of the second-order, two-slit, interference maxima in this case? Let the slits have a width 0.280 mm . In terms of the intensity I0...
A laser of wavelength 200 nm is incident on a metal surface, which causes the ejection...
A laser of wavelength 200 nm is incident on a metal surface, which causes the ejection of electrons. The stopping potential is measured to be 1.66 V. Use the table below to identify the metal. Copper Sodium Aluminum Iron Tungsten
Laser light of some wavelength λ1 shines on a diffraction grating with 285 lines/mm at normal...
Laser light of some wavelength λ1 shines on a diffraction grating with 285 lines/mm at normal incidence, producing a pattern of maxima on a large screen 1.50 m from the grating. The first principal maximum is observed to be at an angle of 8.20° from the central maximum. (a) Determine the wavelength of the incident light. (b) A second laser of wavelength λ2 is added, and it is observed that the third principal maximum of λ2 is at the same...
A double slit experiment is conducted with a red laser with wavelength l = 700 nm....
A double slit experiment is conducted with a red laser with wavelength l = 700 nm. The distance between the slits and the viewing screen is L = 2.00 m. Consider two experiments that have different slit spacings: Experiment A with dA = 2.00 μm and Experiment B with dB = 40.0 μm. For each experiment, calculate the following (be sure to keep at least three significant figures in all your intermediate calculations): a) Using Δr = d sinθ ,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT