Question

In: Advanced Math

(Transient Current) An RLC series circuit has a voltage source given by E(t) = 20sin(t) V,...

(Transient Current)
An RLC series circuit has a voltage source given by E(t) = 20sin(t) V, an inductor of 3 H, a resistor 6 Ω, and a capacitor of 1/3 F. Find the current I(t) in this circuit for t > 0 if I(0) = 2, I'(0) = 0. Find the moment of time when the transient current is equal to zero

Solutions

Expert Solution


Related Solutions

A series RLC circuit connected to a 24-V AC source has a current of 150 mA...
A series RLC circuit connected to a 24-V AC source has a current of 150 mA when the AC source is set to 85 Hz. The voltage on the capacitor is measured to be 36 V. When the frequency of the source is adjusted in any way the current decreases. Calculate the values of R L, and C. In P4, the frequency of the AC source is increased until the voltage on the capacitor has dropped to 12 V. Calculate...
Develop a series RLC circuit that increases the capacitor voltage to the source voltage as fast...
Develop a series RLC circuit that increases the capacitor voltage to the source voltage as fast as possible with no more than a 20% overshoot. The source voltage is 99V, the capacitance is 9F the and the inductance is 23 H. You can adjust the resistance since that the inductance are the two easiest parameters to adjust. I suggest you find ω0 for your circuit and the value of R that results in a critically damped circuit. Plot this vs....
I need to model a series RLC circuit with a AC voltage source using simulink which...
I need to model a series RLC circuit with a AC voltage source using simulink which measures current and voltage across each component. Please include the formulas your model is based off of. thanks. R = 1ohm L = 1 millhenery C = 1 microfarad
An RLC circuit consists of an AC voltage source with a maximum voltage of 122 Volts...
An RLC circuit consists of an AC voltage source with a maximum voltage of 122 Volts connected in series to a resistor, a capacitor, and an inductor. At the resonant frequency, the inductive reactance is 13 Ohms and the total impedance of the circuit is 23 Ohms. What is the average power produced by the battery at 2.6 times the resonant frequency in Watts?
An RLC circuit consists of an AC voltage source with a maximum voltage of 135 Volts...
An RLC circuit consists of an AC voltage source with a maximum voltage of 135 Volts connected in series to a resistor, a capacitor, and an inductor. At the resonant frequency, the inductive reactance is 15 Ohms and the total impedance of the circuit is 24 Ohms. What is the average power produced by the battery at 2.6 times the resonant frequency in Watts?
The voltage drop across an RLC circuit is: v(t) = G*311.13*sine(377t) + 124.45*sine(1131t + 20) volts....
The voltage drop across an RLC circuit is: v(t) = G*311.13*sine(377t) + 124.45*sine(1131t + 20) volts. The current in the direction of the voltage drop is: i(t) = 15.56*sine(377t) + 0.5*sine*(1131t - Φ) Calculate: a) The constants R, L, C of the circuit. b) The angle value Φ c) The average value of the power delivered to the circuit.
A series ac circuit consists of a voltage source of frequency f = 60 Hz and...
A series ac circuit consists of a voltage source of frequency f = 60 Hz and source voltage amplitude 345 volts, a resistor of resistance R = 255 Ω, a capacitor of capacitance C = 6.2×10−6F, and an inductor of inductance L. (a) What must be the value of L for the phase angle Φ to be zero? (b) When L has the value calculated in (a), what is the current amplitude in the circuit?
The followings are parameters of a RLC-series circuit. Use the given information to answer the remaining...
The followings are parameters of a RLC-series circuit. Use the given information to answer the remaining questions. R = 7.5 Ω L = 8.2 x 10-3 H C = 1.0 x 10-5 F Frequency f = 450 Hz Peak voltage V0 = 15V Find the following: (a) inductive reactance of the circuit (b) capacitive reactance of the circuit (c) impedance of the circuit (d) rms current in the circuit (e) rms voltage across the resistor (f) rms voltage across the...
The followings are parameters of a RLC-series circuit. Use the given information to answer the remaining...
The followings are parameters of a RLC-series circuit. Use the given information to answer the remaining questions. R = 7.5 Ω L = 8.2 x 10-3 H C = 1.0 x 10-5 F Frequency f = 450 Hz Peak voltage V0 = 15V Find the following: (a) inductive reactance of the circuit (b) capacitive reactance of the circuit (c) impedance of the circuit (d) rms current in the circuit (e) rms voltage across the resistor (f) rms voltage across the...
A series RC circuit is connected in parallel to a 5 volt DC voltage source, where...
A series RC circuit is connected in parallel to a 5 volt DC voltage source, where resistance R=1 M ohm and capacitance C= 1 microfarad. If at the start of operation, voltage across the capacitor is 5 volts, calculate the voltage across the capacitor at t=2 seconds. Also sketch the instantaneous voltage across the resistor. using differential equation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT