Question

In: Electrical Engineering

The voltage drop across an RLC circuit is: v(t) = G*311.13*sine(377t) + 124.45*sine(1131t + 20) volts....

The voltage drop across an RLC circuit is:

v(t) = G*311.13*sine(377t) + 124.45*sine(1131t + 20) volts.

The current in the direction of the voltage drop is:

i(t) = 15.56*sine(377t) + 0.5*sine*(1131t - Φ)

Calculate:

a) The constants R, L, C of the circuit.
b) The angle value Φ
c) The average value of the power delivered to the circuit.

Solutions

Expert Solution


Related Solutions

An RLC circuit consists of an AC voltage source with a maximum voltage of 122 Volts...
An RLC circuit consists of an AC voltage source with a maximum voltage of 122 Volts connected in series to a resistor, a capacitor, and an inductor. At the resonant frequency, the inductive reactance is 13 Ohms and the total impedance of the circuit is 23 Ohms. What is the average power produced by the battery at 2.6 times the resonant frequency in Watts?
An RLC circuit consists of an AC voltage source with a maximum voltage of 135 Volts...
An RLC circuit consists of an AC voltage source with a maximum voltage of 135 Volts connected in series to a resistor, a capacitor, and an inductor. At the resonant frequency, the inductive reactance is 15 Ohms and the total impedance of the circuit is 24 Ohms. What is the average power produced by the battery at 2.6 times the resonant frequency in Watts?
(Transient Current) An RLC series circuit has a voltage source given by E(t) = 20sin(t) V,...
(Transient Current) An RLC series circuit has a voltage source given by E(t) = 20sin(t) V, an inductor of 3 H, a resistor 6 Ω, and a capacitor of 1/3 F. Find the current I(t) in this circuit for t > 0 if I(0) = 2, I'(0) = 0. Find the moment of time when the transient current is equal to zero
The total impedance of the circuit. The voltage drop across the coil. The total phase constant...
The total impedance of the circuit. The voltage drop across the coil. The total phase constant of the circuit. Calculate the frequency band width. Calculate the natural frequency.
We have a RLC series circuit. On this circuit V=100+j0 volts R=10ohm, L=85mH and C=1uF regarding...
We have a RLC series circuit. On this circuit V=100+j0 volts R=10ohm, L=85mH and C=1uF regarding to this values; * What should F0 has to be for making this circuit work at resonance position? * What is XL value with using F0 frequency? * What is XC value with using F0 frequency? * What is I value when the circuit is at resonance position? * What are voltages on VR, VXL, and VXC components when the circuit is on resonance...
The voltage in a circuit is 115 volts. A particular technique for measuring the voltage gives...
The voltage in a circuit is 115 volts. A particular technique for measuring the voltage gives readings which are normally distributed with mean μ=115 volts and standard deviation 5 volts. Show that the average of four readings has smaller probability of differing from the true value by 3 volts than an individual reading. Hence show that average of several measurement of the same thing is always more accurate than an individual measurement.
The voltage in a circuit is 115 volts. A particular technique for measuring the voltage gives...
The voltage in a circuit is 115 volts. A particular technique for measuring the voltage gives readings which are normally distributed with mean μ=115 volts and standard deviation 5 volts. Show that the average of four readings has smaller probability of differing from the true value by 3 volts than an individual reading. Hence show that average of several measurement of the same thing is always more accurate than an individual measurement.
The voltage across each resistor in the two-resistor circuit is ___________ the voltage across the resistor in the one-resistor circuit.
The current through each resistor in the two-resistor circuit is _________ the current through the resistor in the one-resistor circuit (the circuit in Part A). The voltage across each resistor in the two-resistor circuit is ___________ the voltage across the resistor in the one-resistor circuit. the same as / half half / half twice / half half / twice half / the same as twice / twice
Develop a series RLC circuit that increases the capacitor voltage to the source voltage as fast...
Develop a series RLC circuit that increases the capacitor voltage to the source voltage as fast as possible with no more than a 20% overshoot. The source voltage is 99V, the capacitance is 9F the and the inductance is 23 H. You can adjust the resistance since that the inductance are the two easiest parameters to adjust. I suggest you find ω0 for your circuit and the value of R that results in a critically damped circuit. Plot this vs....
In the following graph of a sine wave, the Y-axis is voltage (Volts) and the X-axis is time seconds). What is the voltage amplitude?
In the following graph of a sine wave, the Y-axis is voltage (Volts) and the X-axis is time seconds). What is the voltage amplitude? What is the phase shift in seconds?What is the phase shift in degrees?What is the phase shift in radians?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT