Question

In: Electrical Engineering

Develop a series RLC circuit that increases the capacitor voltage to the source voltage as fast...

Develop a series RLC circuit that increases the capacitor voltage to the source voltage as fast as possible with no more than a 20% overshoot. The source voltage is 99V, the capacitance is 9F the and the inductance is 23 H. You can adjust the resistance since that the inductance are the two easiest parameters to adjust. I suggest you find ω0 for your circuit and the value of R that results in a critically damped circuit. Plot this vs. time using Δt ≈ 0.1/ω0. Plot the under damped response on the same set of axes. Hint – the resistance will be lower than for the critically damped circuit. Adjust the resistance to so that the capacitor voltage reaches the source voltage as soon as possible without overshooting by more than 20%.

Solutions

Expert Solution

Solution: I have uploaded the images of the solution below.

Please give a thumbs up to the solution.


Related Solutions

I need to model a series RLC circuit with a AC voltage source using simulink which...
I need to model a series RLC circuit with a AC voltage source using simulink which measures current and voltage across each component. Please include the formulas your model is based off of. thanks. R = 1ohm L = 1 millhenery C = 1 microfarad
An RLC circuit consists of an AC voltage source with a maximum voltage of 122 Volts...
An RLC circuit consists of an AC voltage source with a maximum voltage of 122 Volts connected in series to a resistor, a capacitor, and an inductor. At the resonant frequency, the inductive reactance is 13 Ohms and the total impedance of the circuit is 23 Ohms. What is the average power produced by the battery at 2.6 times the resonant frequency in Watts?
An RLC circuit consists of an AC voltage source with a maximum voltage of 135 Volts...
An RLC circuit consists of an AC voltage source with a maximum voltage of 135 Volts connected in series to a resistor, a capacitor, and an inductor. At the resonant frequency, the inductive reactance is 15 Ohms and the total impedance of the circuit is 24 Ohms. What is the average power produced by the battery at 2.6 times the resonant frequency in Watts?
3.Consider a series RLC circuit. a) When the capacitor is charged and the circuit is closed,...
3.Consider a series RLC circuit. a) When the capacitor is charged and the circuit is closed, find the condition for the current to be oscillatory. b) When the circuit is connected to an AC source V = ?0 cos??, find the voltage across the inductor and the angular frequency at which the voltage across the inductor is maximized.
(Transient Current) An RLC series circuit has a voltage source given by E(t) = 20sin(t) V,...
(Transient Current) An RLC series circuit has a voltage source given by E(t) = 20sin(t) V, an inductor of 3 H, a resistor 6 Ω, and a capacitor of 1/3 F. Find the current I(t) in this circuit for t > 0 if I(0) = 2, I'(0) = 0. Find the moment of time when the transient current is equal to zero
Question 1 A series RLC circuit has a capacitor with a capacitance of 36.0 ?F ,...
Question 1 A series RLC circuit has a capacitor with a capacitance of 36.0 ?F , an inductor with an inductance of 0.300 H and a resistor with a resistance of 65.0 ?. The circuit is attached to a source that has a rms voltage of 52.0 V and a frequency of 85.0 Hz. What is the peak current, the phase angle and the average power loss? The Peak Current: The Phase Angle: The Average Power Loss:
a circuit that has a resistor, capacitor, and inductor in series with a 5V AC voltage...
a circuit that has a resistor, capacitor, and inductor in series with a 5V AC voltage source R = 5 Ω; L = 1 mH; C = 447 a) Find ω0 and f0 b) Complete the table f = f0 f = 0.5f0 f = 1.5f0 I VL Vc c) What is the phase between circuit current and applied voltage at f = f0 (in radians) d) Determine if the below statements are true or false Below resonance (f <...
10.An AC voltage source is connected in series to an inductor, a capacitor, and a resistor...
10.An AC voltage source is connected in series to an inductor, a capacitor, and a resistor of 8 Ohms. At the frequency when the phase angle is zero, capacitive reactance is 7 Ohms. What is the phase angle between the current and voltage at a frequency which is a factor of 3.2 times less than this frequency? answer in degresss and if negative 6. the resistance of a coil spun in a generator is 2 Ohms. the coil is in...
An RLC series circuit has a 2.60 ? resistor, a 200 µH inductor, and a 78.0 µF capacitor.
  An RLC series circuit has a 2.60 ? resistor, a 200 µH inductor, and a 78.0 µF capacitor. (a) Find the circuit's impedance (in ?) at 120 Hz. (b) Find the circuit's impedance (in ?) at 5.00 kHz. (c) If the voltage source has Vrms = 5.60 V, what is Irms (in A) at each frequency? Irms, 120 Hz =_____ A Irms, 5.00 kHz =_____A (d) What is the resonant frequency (in kHz) of the circuit? (e) What is...
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor....
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor. The circuit is driven by a power source that oscillates at 20.0 Hz and has an ε_rms value of 90.0 V . The power source is switched on at t = 0 and at that instant the emf is at its maximum value. A) Calculate the power supplied at t = 0.0200 s. B) Calculate the power supplied at t = 0.0375 s. C)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT