Question

In: Physics

An ideal gas is expanding adiabatically from 314.3 K to 243.3 K, creating 3280 J of...

An ideal gas is expanding adiabatically from 314.3 K to 243.3 K, creating 3280 J of work. What type of gas is it?

Solutions

Expert Solution


Given the gas is expanding

temperatures are T1 = 314.3 k , T2 = 243.3 k
work done W = 3280 J

We know that the work done in Adiabatic process is

   W = (R/(gamma -1))(T1-T2)

substituting the values

   3280 = (8.314/(gamma-1)(314.3 -243.3)

   Gamma = 1.18

We know that Gamma is the ratio of molar specific heats at constant volume and pressure

for triatomic gases , Cp =9/2,Cv = 7/2

gamma = Cp/Cv = (9/2)/(7/2) = 9/7 = 1.28 , the given ideal gas is near this value so it is a Triatomic gas



Related Solutions

An ideal gas with Cp = 2.5R at 298 K and 5.00 bar is adiabatically throttled...
An ideal gas with Cp = 2.5R at 298 K and 5.00 bar is adiabatically throttled to 1.00 bar. If the flow rate of gas is 1.71 mol/s, and the surroundings are at a temperature of 3°C, what is the rate of lost work, in kW? Please give your answer to 3 SF, and be very careful with units.
Ten moles of an ideal gas at 5 bar and 600 K is expanded adiabatically till...
Ten moles of an ideal gas at 5 bar and 600 K is expanded adiabatically till its pressure becomes 1/5th the initial pressure. Then its compressed at constant pressure and finally heated at constant volume to return to its initial state, calculate: (a) heat transfer (b) work transfer (c) internal energy and enthalpy change for each process, and for the entire cycle.Based on the results of internal energy change and enthalpy change, is the entire process follows the condition of...
air behaves as an ideal gas with R = 0.287 k J k g K. A...
air behaves as an ideal gas with R = 0.287 k J k g K. A compressor operates at steady state and takes in air from ambient 0 kPa, gage and 300 K. The outlet pressure is 60 kPa, gage and 300 K. Determine: the mass flow rate if the inlet area is 10 cm2 and the inlet pressure is -3 kPa, gage. the minimum outlet temperature that is possible for this compressor. the isentropic efficiency of the compressor, assuming...
Why does an ideal gas cool when it expands adiabatically and reversibly?
Why does an ideal gas cool when it expands adiabatically and reversibly?
An ideal monatomic gas at an initial temperature of 500 K is expanded from 5.0 atm...
An ideal monatomic gas at an initial temperature of 500 K is expanded from 5.0 atm to a final pressure of 1.0 atm. Calculate w, q, DU, and (where applicable) DH and DT when the expansion is performed (a) reversibly and isothermally, and (b) reversibly and adiabatically. Help Please!!!
in this example, 2.5 mol of an ideal gas with CV,m= 12.47Jmol-1K-1 is expanded adiabatically against...
in this example, 2.5 mol of an ideal gas with CV,m= 12.47Jmol-1K-1 is expanded adiabatically against a constant external pressure of 1 bar. The initial temperature and pressure of the gas are 325 K and 2.5bar respectively. The final pressure is 1.25 bar. Calculate the final temperature, q, w, ΔU and ΔH
A mass of m = 1 Kg of an ideal gas (gas constant R= 278 J/KgK)...
A mass of m = 1 Kg of an ideal gas (gas constant R= 278 J/KgK) undergoes two polytropic processes. During the first process temperature increases from 27 0C to 237 0C and volume decreases from 1 m3 to 0.3 m3. During the second process temperature increases to 473 0C and volume is constant. The isentropic exponent of the gas is 1.4. Determine (a) Polytropic exponents (b) missing properties of the gas (c) heat and work of the first process...
8. Three moles of ideal monatomic gas at 400 K are compressed from 1 atm to...
8. Three moles of ideal monatomic gas at 400 K are compressed from 1 atm to 20 atm. Find for each of the following processes starting at the same initial condition the work, heat, ΔU, and ΔH if the compression is performed a. Isothermally b. Isochorically c. Adiabatically
A 25-L sample of an ideal gas with ? = 1.67 is at 250 K and...
A 25-L sample of an ideal gas with ? = 1.67 is at 250 K and 50 kPa. The gas is compressed adiabatically until its pressure triples, then cooled at constant volume back to 250 K, and finally allowed to expand isothermally to its original state. a. Sketch this cyclical process in a pV diagram (the sketch should be drawn to scale and labelled). b. How much work is done on the gas? c. For each step in the process...
A monatomic ideal gas has an initial temperature of 381 K. This gas expands and does...
A monatomic ideal gas has an initial temperature of 381 K. This gas expands and does the same amount of work whether the expansion is adiabatic or isothermal. When the expansion is adiabatic, the final temperature of the gas is 290 K. What is the ratio of the final to the initial volume when the expansion is isothermal?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT