Question

In: Mechanical Engineering

air behaves as an ideal gas with R = 0.287 k J k g K. A...

air behaves as an ideal gas with R = 0.287 k J k g K.

  1. A compressor operates at steady state and takes in air from ambient 0 kPa, gage and 300 K. The outlet pressure is 60 kPa, gage and 300 K. Determine:
    1. the mass flow rate if the inlet area is 10 cm2 and the inlet pressure is -3 kPa, gage.
    2. the minimum outlet temperature that is possible for this compressor.
    3. the isentropic efficiency of the compressor, assuming no heat loss.
    4. if there is a heat loss of 20 kJ/kg, the work required to run the compressor, and the new isentropic efficiency.

outlet is 500K

Solutions

Expert Solution


Related Solutions

For these problems, assume air behaves as an ideal gas with R=0.287kJkgK. A compressor operates at...
For these problems, assume air behaves as an ideal gas with R=0.287kJkgK. A compressor operates at steady state and takes in air from ambient 0 kPa, gage and 200 K. The outlet pressure is 60 kPa, gage and 400 K. Determine: the mass flow rate if the inlet area is 20 cm2 and the inlet pressure is -5 kPa, gage. the minimum outlet temperature that is possible for this compressor. the isentropic efficiency of the compressor, assuming no heat loss....
An ideal gas is expanding adiabatically from 314.3 K to 243.3 K, creating 3280 J of...
An ideal gas is expanding adiabatically from 314.3 K to 243.3 K, creating 3280 J of work. What type of gas is it?
A mass of m = 1 Kg of an ideal gas (gas constant R= 278 J/KgK)...
A mass of m = 1 Kg of an ideal gas (gas constant R= 278 J/KgK) undergoes two polytropic processes. During the first process temperature increases from 27 0C to 237 0C and volume decreases from 1 m3 to 0.3 m3. During the second process temperature increases to 473 0C and volume is constant. The isentropic exponent of the gas is 1.4. Determine (a) Polytropic exponents (b) missing properties of the gas (c) heat and work of the first process...
1) A gas turbine operates on an ideal Joule cycle using air (γ = 1.4; R...
1) A gas turbine operates on an ideal Joule cycle using air (γ = 1.4; R = 0.287 kJ/kg K) as working fluid. Air enters the compressor at temperature of 27◦C and pressure of 1.25 bar and is compressed to 7.6 bar. When the maximum cycle temperature is limited to 800 oC, calculate, (i) the thermal efficiency and work ratio of the cycle (ii) the temperature of air exiting the turbine and the change in specific entropy of turbine process...
The volume of some air, assumed to be an ideal gas, in the cylinder of a...
The volume of some air, assumed to be an ideal gas, in the cylinder of a car engine is 540cm^3 at a pressure of 1.1 x 10^5 Pa and a Temperature of 27 Degree celsius. The air is suddenly compressed, so that no thermal energy enters or leaves the gas, to a volume of 30cm^3. The pressure rises to 6.5 x 10^6 Pa. Determine the Temperature of the gas after compression.
A monatomic ideal gas has an initial temperature of 381 K. This gas expands and does...
A monatomic ideal gas has an initial temperature of 381 K. This gas expands and does the same amount of work whether the expansion is adiabatic or isothermal. When the expansion is adiabatic, the final temperature of the gas is 290 K. What is the ratio of the final to the initial volume when the expansion is isothermal?
Cgas = 1.3 J/g×K    Hvap = 38.56 kJ/mol    Cliq = 2.3 J/g×K      Hfus = 5.02 kJ/mol   ...
Cgas = 1.3 J/g×K    Hvap = 38.56 kJ/mol    Cliq = 2.3 J/g×K      Hfus = 5.02 kJ/mol    Csolid = 0.97 J/g×K      Condensation Temp = 78.0oC               Freezing Pt = -114.0oC Calculate the amount of heat required toconvert 92.6 mL of ethanol, C2H6O, from 110.0oC to -98.0oC.
(a) Find ∆G◦ and K at 298.15 K for the gas-phase reaction 2 SO2(g) + O2(g)...
(a) Find ∆G◦ and K at 298.15 K for the gas-phase reaction 2 SO2(g) + O2(g) 2 SO3(g) (b) If a stoichiometric mixture of SO2 and O2 is allowed to come to equilibrium at 298.15 K and 1.000bar, find the partial pressure of SO2.
Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with...
Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetric flow rate of 5 m3/s. The turbine inlet temperature is 1800 K. For a compressor pressure ratio of 9, determine: (a) the percent thermal efficiency of the cycle. (b) the back work ratio. (c) the net power developed, in kW.
An air engine is modeled after the ott cycle. Assume ideal gas and air standard cold...
An air engine is modeled after the ott cycle. Assume ideal gas and air standard cold valus for properties. Intake air is at 100kPa and Temperature of 27°C. The compression ration is 8:1. The heat added during ignition is 1740 kJ/kg a) Draw and Label the Pv and Ts diagrams for the Otto cycle b)Find the specific volume at intake state #1 c) Find the temperature at the end of the compression stroke d) Find the Pressure at the end...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT