Question

In: Chemistry

An ideal monatomic gas at an initial temperature of 500 K is expanded from 5.0 atm...

An ideal monatomic gas at an initial temperature of 500 K is expanded from 5.0 atm to a final pressure of 1.0 atm. Calculate w, q, DU, and (where applicable) DH and DT when the expansion is performed (a) reversibly and isothermally, and (b) reversibly and adiabatically.

Help Please!!!

Solutions

Expert Solution

Given,

T=500 K

P1=5atm

P2=1 atm

a) For reversible isothermal process:

                w= -RT ln (P2/P1)

                =-8.314*500*ln(1/5)=6690.4 J

                q=-w=-6690.4 J

                dU=0

                dH=dU-w=0+6690.4=-6690.4 J

                dT= 0 for isothermal process

b) For reversible adiabatic process:

                w=-RT1((P2/P)(n-1)/n -1)

                =-8.314*500*((1/5)0.67/1.67-1)

                =-1973 J

                q=0 for adiabatic process

                dU=-w=1973 J

                dH=0

                dT= w/CV

                        =1973/20.8=94.8 K


Related Solutions

If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded...
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded isothermally from a volume of 1.07 L to a volume of 4.61 L . Calculate the work done by the gas. Calculate the heat flow into or out of the gas. If the number of moles is doubled, by what factors do your answers to parts A and B change?
A monatomic ideal gas has an initial temperature of 381 K. This gas expands and does...
A monatomic ideal gas has an initial temperature of 381 K. This gas expands and does the same amount of work whether the expansion is adiabatic or isothermal. When the expansion is adiabatic, the final temperature of the gas is 290 K. What is the ratio of the final to the initial volume when the expansion is isothermal?
A monatomic ideal gas is at an initial pressure of 1.54 atm and 76.0 cm3. The...
A monatomic ideal gas is at an initial pressure of 1.54 atm and 76.0 cm3. The gas undergoes an isochoric increase in pressure to 2.31 atm, then an isobaric expansion to 114 cm3. Pressure is reduced isochorically to the original pressure before an isobaric compression returns the gas to its initial values. For 1.95 moles of the gas, complete the following: a) Generate a sketch of the PV diagram, with values clearly represented. b) Find the heat absorbed and heat...
15.0 L of an ideal monatomic gas at 3.00 atm and 450 K are contained in...
15.0 L of an ideal monatomic gas at 3.00 atm and 450 K are contained in a cylinder with a piston. The gas first cools isochorically to 270 K (step 1). It then expands isobarically back to its original temperature (step 2), and then contracts isothermally back to its original volume (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
14.4 15.0 L of an ideal monatomic gas at 3.00 atm and 450 K are contained...
14.4 15.0 L of an ideal monatomic gas at 3.00 atm and 450 K are contained in a cylinder with a piston. The gas first cools isochorically to 270 K (step 1). It then expands isobarically back to its original temperature (step 2), and then contracts isothermally back to its original volume (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step...
The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant...
The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant volume. What are (a) the work W done by the gas, (b) the energy transferred as heat Q , (c) the change ?Eint in the internal energy of the gas, and (d) the change ?K in the average kinetic energy per atom
We start with 5.00 moles of an ideal monatomic gas with an initial temperature of 133...
We start with 5.00 moles of an ideal monatomic gas with an initial temperature of 133 ∘C. The gas expands and, in the process, absorbs an amount of heat equal to 1300 J and does an amount of work equal to 2200 J Use R = 8.3145 J/(mol⋅K) for the ideal gas constant.
A monatomic ideal gas of N atoms has initial temperature T0 and a volume V0, the...
A monatomic ideal gas of N atoms has initial temperature T0 and a volume V0, the gas is allowed to expand slowly to fill a final volume of 7V0 in the following ways: At constant temperature At constant pressure Adiabatically For each case (a you must determine i, ii, and iii, for b and c do the same) determine (i) the work done by the gas, (ii) the amount of energy transferred to the gas by heating, and (iii) the...
a) Consider 1.3 moles of an ideal gas at an initial temperature of 400 K and...
a) Consider 1.3 moles of an ideal gas at an initial temperature of 400 K and in a 1.2 m3 closed container. If the gas goes through an isochoric process to twice the initial temperature, what is the new pressure of the gas in Pa? b) Consider 1.3 moles of an ideal gas at an initial temperature of 400 K and in a 1.2 m3closed container. If the gas goes through an isothermal process to 3.6 m3, what is the...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.40 atm ;...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.40 atm ; the volume of the gas changes from 3.20×10-2 m3 to 4.50×10−2 m3 . a. Calculate the initial temperature of the gas. b. Calculate the final temperature of the gas. c. Calculate the amount of work the gas does in expanding. d. Calculate the amount of heat added to the gas. e. Calculate the change in internal energy of the gas.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT