Question

In: Other

Ten moles of an ideal gas at 5 bar and 600 K is expanded adiabatically till...

Ten moles of an ideal gas at 5 bar and 600 K is expanded adiabatically till its pressure becomes 1/5th the initial pressure. Then its compressed at constant pressure and finally heated at constant volume to return to its initial state, calculate: (a) heat transfer (b) work transfer (c) internal energy and enthalpy change for each process, and for the entire cycle.Based on the results of internal energy change and enthalpy change, is the entire process follows the condition of cyclic process or not give your comment.Cp=5/2R and Cv= 3/2 R

Solutions

Expert Solution


Related Solutions

5 moles of ideal gas is initially at 300 K and 5 bar. It is compressed...
5 moles of ideal gas is initially at 300 K and 5 bar. It is compressed to 10 bar at 300 K. This change is carried out by two different reversible processes: A: heating at constant volume followed by cooling at constant pressure B: cooling at constant pressure followed by heating at constant volume Depict these processes on a PT graph. (Hand drawn on engineering sheet would suffice). Calculate ΔU, ΔH, Q, and W requirements for each path. Cv=20.78 J/mol.K...
An ideal gas with Cp = 2.5R at 298 K and 5.00 bar is adiabatically throttled...
An ideal gas with Cp = 2.5R at 298 K and 5.00 bar is adiabatically throttled to 1.00 bar. If the flow rate of gas is 1.71 mol/s, and the surroundings are at a temperature of 3°C, what is the rate of lost work, in kW? Please give your answer to 3 SF, and be very careful with units.
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded...
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded isothermally from a volume of 1.07 L to a volume of 4.61 L . Calculate the work done by the gas. Calculate the heat flow into or out of the gas. If the number of moles is doubled, by what factors do your answers to parts A and B change?
Argon at 400 K and 50 bar is adiabatically and reversibly expanded to 1 bar through...
Argon at 400 K and 50 bar is adiabatically and reversibly expanded to 1 bar through a turbine in a steady process. Compute the outlet temperature and work derived per mole.
An ideal gas is expanding adiabatically from 314.3 K to 243.3 K, creating 3280 J of...
An ideal gas is expanding adiabatically from 314.3 K to 243.3 K, creating 3280 J of work. What type of gas is it?
An ideal gas is expanded from 5 bars to 1 bar through isentropic(reversible and adiabatic) operation...
An ideal gas is expanded from 5 bars to 1 bar through isentropic(reversible and adiabatic) operation of a turbine. For ambient conditions at 25°C and 1 bar, calculate the exergy of the turbine when the gas inlet temperature to the turbine is: I) above ambient conditions at 250°C (8marks) ii) below ambient condition at -50°C (8marks) iii) comment on your answer to I and ii above (4marks) (Cp=1.0KJ/Kg.K , n=1.4)
An ideal gas is expanded from 10 bar to 1.0 bar at constant temperature. Calculate deltaU,...
An ideal gas is expanded from 10 bar to 1.0 bar at constant temperature. Calculate deltaU, deltaH, and deltaS. CP = 5/2 R.
Four moles of a monoatomic ideal gas in a cylinder at 27 degrees Celsius is expanded...
Four moles of a monoatomic ideal gas in a cylinder at 27 degrees Celsius is expanded at constant pressure equal to 1 atm until its volume is doubled. a) What is the change in internal energy? b) How much work was done by the gas in the process? c) How much heat was transferred to the gas?
10.0 L of an ideal gas at 0°C and 10.0 bar are expanded to a final...
10.0 L of an ideal gas at 0°C and 10.0 bar are expanded to a final pressure of 1.00 bar CV = 3/2 R. Calculate deltaU, deltaH, q, w, and deltaS if the process is: a) reversible and isothermal b) irreversible and adiabatic
in this example, 2.5 mol of an ideal gas with CV,m= 12.47Jmol-1K-1 is expanded adiabatically against...
in this example, 2.5 mol of an ideal gas with CV,m= 12.47Jmol-1K-1 is expanded adiabatically against a constant external pressure of 1 bar. The initial temperature and pressure of the gas are 325 K and 2.5bar respectively. The final pressure is 1.25 bar. Calculate the final temperature, q, w, ΔU and ΔH
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT