Question

In: Chemistry

in this example, 2.5 mol of an ideal gas with CV,m= 12.47Jmol-1K-1 is expanded adiabatically against...

in this example, 2.5 mol of an ideal gas with CV,m= 12.47Jmol-1K-1 is expanded adiabatically against a constant external pressure of 1 bar. The initial temperature and pressure of the gas are 325 K and 2.5bar respectively. The final pressure is 1.25 bar. Calculate the final temperature, q, w, ΔU and ΔH

Solutions

Expert Solution

Initial volume (V1) = nRT1/P1

                              = 2.5 x 0.08205 x 325/2.5

                              = 26.7 L

Final volume (V2) = P1V1/P2

                              = 2.5 x 26.7/1.25

                              = 53.4 L

Final Temperature (T2) = T1V2/V1

                                      = 325 x 53.4/26.7

                                      = 650 K

w = nCvdT

    = 2.5 x 12.47(650-325

    = 10.13 kJ

q = 0

dU = w = 10.13 kJ

Cp = Cv + R = 12.47 + 8.314 = 20.784 J.mol-1.K-1

dH = nCpdT

      = 2.5 x 20.784(325)

      = 16.90 kJ


Related Solutions

A 2.00 mol sample of an ideal gas with a molar specific heat of CV =...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV = 5 2 R always starts at pressure 1.00 ✕ 105 Pa and temperature 350 K. For each of the following processes, determine the final pressure (Pf, in kPa), the final volume (Vf, in L), the final temperature (Tf, in K), the change in internal energy of the gas (ΔEint, in J), the energy added to the gas by heat (Q, in J), and the...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV =...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV = (5/2)R always starts at pressure 2.00 ✕ 105 Pa and temperature 300 K. For each of the following processes, determine the final pressure (Pf, in kPa), the final volume (Vf, in L), the final temperature (Tf, in K), the change in internal energy of the gas (ΔEint, in J), the energy added to the gas by heat (Q, in J), and the work done...
2.15 mol of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list...
2.15 mol of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list from an initial state described by T=350.K and P=5.00bar. 1) The gas undergoes a reversible adiabatic expansion until the final pressure is one-fourth its initial value. 2) The gas undergoes an adiabatic expansion against a constant external pressure of 1.25 bar until the final pressure is one-fourth its initial value. 3)The gas undergoes an expansion against a constant external pressure of zero bar until...
. Three moles of an ideal gas (CV,m =3/2R ) is compressed at 25℃, at pressure...
. Three moles of an ideal gas (CV,m =3/2R ) is compressed at 25℃, at pressure of 1 atm to 75 atm, with a surrounding maintained at 25℃. The process was performed at condition (i) Reversible and (ii) against constant external pressure of 0.80 atm. Calculate the following q, W, ∆U,∆H, for each path
2.20 moles of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list...
2.20 moles of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list from an initial state described by T = 310. K and P = 1.00 bar. The gas is heated to 685 K at a constant external pressure of 1.00 bar. Calculate q for this process. The gas is heated to 685 K at a constant external pressure of 1.00 bar. Calculate w for this process The gas is heated to 685 K at a...
2.60 moles of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list...
2.60 moles of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list from an initial state described by T = 310. K and P = 1.00 bar. Calculate: A. The gas is heated to 710 K at a constant external pressure of 1.00 bar. Calculate q for this process. B. The gas is heated to 710 K at a constant external pressure of 1.00 bar. Calculate w for this process. C. The gas is heated to...
Why does an ideal gas cool when it expands adiabatically and reversibly?
Why does an ideal gas cool when it expands adiabatically and reversibly?
For 1 mol of an ideal gas, Pexternal = P = 1 atm. The temperature is...
For 1 mol of an ideal gas, Pexternal = P = 1 atm. The temperature is changed from 125ºC to 25.0ºC, and CV,m = 3/2R. Calculate (all units are J) q= , w= , ∆U= , and ∆H= . Please enter your answers with 2 decimals in E notation, such as 2.33E4 (=23345). If the answer is negative, please do not forget the negative sign. If answer is zero, please just enter 0 without decimal.
An ideal gas with Cp = 2.5R at 298 K and 5.00 bar is adiabatically throttled...
An ideal gas with Cp = 2.5R at 298 K and 5.00 bar is adiabatically throttled to 1.00 bar. If the flow rate of gas is 1.71 mol/s, and the surroundings are at a temperature of 3°C, what is the rate of lost work, in kW? Please give your answer to 3 SF, and be very careful with units.
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded...
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded isothermally from a volume of 1.07 L to a volume of 4.61 L . Calculate the work done by the gas. Calculate the heat flow into or out of the gas. If the number of moles is doubled, by what factors do your answers to parts A and B change?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT