Question

In: Physics

Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential...

Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential with natural frequency ω0. For times t > 0 a time-dependent potential of the form
V1(x) = εxcos(ωt) is turned on. Assume the system starts in an initial state|n>.

1. Find the transition probability from initial state |n> to a state |n'> with n' ≠ n.

2. Find the transition rate (probability per unit time) for the transition |n>→|n'>.

Solutions

Expert Solution


Related Solutions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Consider a particle of mass m moving in a two-dimensional harmonic oscillator potential : U(x,y)=...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Consider a particle of mass m moving in a two-dimensional harmonic oscillator potential : U(x,y)= 1/2 mω^2 (x^2+y^2 ) a. Use separation of variables in Cartesian coordinates to solve the Schroedinger equation for this particle. b. Write down the normalized wavefunction and energy for the ground state of this particle. c. What is the energy and degeneracy of each of the lowest 5 energy levels of this particle? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Suppose that a particle with charge q and mass m is initially at the origin with...
Suppose that a particle with charge q and mass m is initially at the origin with zero velocity in the presence of external electric and magnetic fields given by E = (Ex, 0, Ez), B = (0, 0, Bz). (1) Find x(t) and draw the trajectory the particle follows in space.
Consider a particle that is confined by a one dimensional quadratic (harmonic) potential of the form...
Consider a particle that is confined by a one dimensional quadratic (harmonic) potential of the form U(x) = Ax2 (where A is a positive real number). a) What is the Hamiltonian of the particle (expressed as a function of velocity v and x)? b) What is the average kinetic energy of the particle (expressed as a function of T)? c) Use the Virial Theorem (Eq. 1.46) to obtain the average potential energy of the particle. d) What would the average...
A particle of charge q and mass m is accelerated from rest through a potential difference...
A particle of charge q and mass m is accelerated from rest through a potential difference V, after which it encounters a uniform magnetic field B perpendicular to its velocity v. If the particle moves in a plane perpendicular to B, (a) Find an expression for the radius of its circular path in terms of q, V and B. (b) If the particle is an electron, what must the potential difference be so it describes a circular path of radius...
The Simple harmonic oscillator: A particle of mass m constrained to move in the x-direction only...
The Simple harmonic oscillator: A particle of mass m constrained to move in the x-direction only is subject to a force F(x) = −kx, where k is a constant. Show that the equation of motion can be written in the form d^2x/dt2 + ω^2ox = 0, where ω^2o = k/m . (a) Show by direct substitution that the expression x = A cos ω0t + B sin ω0t where A and B are constants, is a solution and explain the...
Consider a system of three non-interacting particles confined by a one-dimensional harmonic oscillator potential and in...
Consider a system of three non-interacting particles confined by a one-dimensional harmonic oscillator potential and in thermal equilibrium with a total energy of 7/2 ħw. (a) what are the possible occupation numbers for this system if the particles are bosons. (b) what is the most probable energy for a boson picked at random from this system.
2. For a system of non-interacting, one-dimensional, distinguishable classical particles in a harmonic oscillator potential, V...
2. For a system of non-interacting, one-dimensional, distinguishable classical particles in a harmonic oscillator potential, V = kx2 in contact with a particle reservoir with chemical potential µ and a thermal reservoir at temperature T. (a) Calculate the grand partition function Z for the system. Note that there is no fixed "volume" for this system. (b) Obtain N (number of particles) and U as functions of µ and T and show that U satisfies the equipartition theorem
1. Consider an electron in a 1D harmonic oscillator potential. Suppose the electron is in a...
1. Consider an electron in a 1D harmonic oscillator potential. Suppose the electron is in a state which is an equal mix of the ground state and the first-excited state. a) Write the time-dependent state in Dirac notation. b) Calculate 〈x〉. Calculate 〈p〉 using raising and lower operators. c) Graph 〈x〉 as a function of time.
Consider a particle of mass m confined to a one-dimensional box of length L and in...
Consider a particle of mass m confined to a one-dimensional box of length L and in a state with normalized wavefunction. For a partide in a box the energy is given by En = n2h2/8mL2 and, because the potential energy is zero, all of this energy is kinetic. Use this observation and, without evaluating any integrals, explain why < px2>= n2h2/4L2
Consider a classical harmonic oscillator of mass m and spring constant k . What is the...
Consider a classical harmonic oscillator of mass m and spring constant k . What is the probability density for finding the particle at position x ? How does this compare to the probability density for the ground state of a quantum mechanical harmonic oscillator
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT