Question

In: Chemistry

For a particle of mass m in a two-dimensional potential well(i.e. particle confined in a 2D...

For a particle of mass m in a two-dimensional potential well(i.e. particle confined in a 2D box) with sides L1 and L2:
a) Set up the Schrödinger equation for this system.
b) Using separation of variables, derive an expression for thewavefunction
Ψ and for the energy levels of the system. Be sure toshow all of your work for this derivation.
c) For the case of square potential well with side L (i.e.L1=L2=L), sketch an energy level diagram forthe nine lowest energy levels, showing degeneracy whereappropriate.

Solutions

Expert Solution


Related Solutions

A particle of mass m is confined to a finite potential energy well of width L....
A particle of mass m is confined to a finite potential energy well of width L. The equations describing the potential are U=U0 x<0 U=0 0 < x < L U=U0 x > L Take a solution to the time-independent Schrodinger equation of energy E (E < U0) to have the form A exp(-k1 x) + B exp(k1 x) x < 0 C cos(-k2 x) + D sin(k2 x) 0 < x < L F exp(-k3 x) + G exp(k3...
Consider a particle of mass m confined to a one-dimensional box of length L and in...
Consider a particle of mass m confined to a one-dimensional box of length L and in a state with normalized wavefunction. For a partide in a box the energy is given by En = n2h2/8mL2 and, because the potential energy is zero, all of this energy is kinetic. Use this observation and, without evaluating any integrals, explain why < px2>= n2h2/4L2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Consider a particle of mass m moving in a two-dimensional harmonic oscillator potential : U(x,y)=...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Consider a particle of mass m moving in a two-dimensional harmonic oscillator potential : U(x,y)= 1/2 mω^2 (x^2+y^2 ) a. Use separation of variables in Cartesian coordinates to solve the Schroedinger equation for this particle. b. Write down the normalized wavefunction and energy for the ground state of this particle. c. What is the energy and degeneracy of each of the lowest 5 energy levels of this particle? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential...
Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential with natural frequency ω0. For times t > 0 a time-dependent potential of the form V1(x) = εxcos(ωt) is turned on. Assume the system starts in an initial state|n>. 1. Find the transition probability from initial state |n> to a state |n'> with n' ≠ n. 2. Find the transition rate (probability per unit time) for the transition |n>→|n'>.
Consider the particle-in-a-box problem in 1D. A particle with mass m is confined to move freely...
Consider the particle-in-a-box problem in 1D. A particle with mass m is confined to move freely between two hard walls situated at x = 0 and x = L. The potential energy function is given as (a) Describe the boundary conditions that must be satisfied by the wavefunctions ψ(x) (such as energy eigenfunctions). (b) Solve the Schr¨odinger’s equation and by using the boundary conditions of part (a) find all energy eigenfunctions, ψn(x), and the corresponding energies, En. (c) What are...
particle of mass m, which moves freely inside an infinite potential well of length a, is...
particle of mass m, which moves freely inside an infinite potential well of length a, is initially in the state Ψ(x, 0) = r 3 5a sin(3πx/a) + 1 √ 5a sin(5πx/a). (a) Normalize Ψ(x, 0). (b) Find Ψ(x, t). (c) By using the result in (b) calculate < p2 >. (d) Calculate the average energy
Consider an electron confined in a one-dimensional infinite potential well having a width of 0.4 nm....
Consider an electron confined in a one-dimensional infinite potential well having a width of 0.4 nm. (a) Calculate the values of three longest wavelength photons emitted by the electron as it transitions between the energy levels inside the well [3 pts.]. (b) When the electron undergoes a transition from the n = 2 to the n = 1 level, what will be its emitted energy and wavelength [2 pts.]. To which region of the electromagnetic spectrum does this wavelength belong?...
Can a particle in a 3 dimensional potential well experience quantum tunneling? Why or why not?...
Can a particle in a 3 dimensional potential well experience quantum tunneling? Why or why not? How about in two dimensions?
Derive the general wavefunction for a particle in a box (i.e. the infinite square well potential)....
Derive the general wavefunction for a particle in a box (i.e. the infinite square well potential). Go on to normalise it. What energy/energies must the particle have to exist in this box?
Consider a particle of mass m that can move in a one-dimensional box of size L...
Consider a particle of mass m that can move in a one-dimensional box of size L with the edges of the box at x=0 and x = L. The potential is zero inside the box and infinite outside. You may need the following integrals: ∫ 0 1 d y sin ⁡ ( n π y ) 2 = 1 / 2 ,  for all integer  n ∫ 0 1 d y sin ⁡ ( n π y ) 2 y = 1...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT