Question

In: Physics

The Simple harmonic oscillator: A particle of mass m constrained to move in the x-direction only...

The Simple harmonic oscillator: A particle of mass m constrained to move in the x-direction only is subject to a force F(x) = −kx, where k is a constant. Show that the equation of motion can be written in the form d^2x/dt2 + ω^2ox = 0, where ω^2o = k/m . (a) Show by direct substitution that the expression x = A cos ω0t + B sin ω0t where A and B are constants, is a solution and explain the physical significance of the quantity ω0. Show that an alternative solution may be expressed as x = xmax cos(ω0t + φ) where xmax is the amplitude and φ is the phase constant of oscillation. (b) Find in terms of m and ω0 the change in the potential energy U(x) − U(0) of the particle as it moves from the origin. Explain the physical significance of the sign in your result. (c) The potential energy is subject to an arbitrary additive constant; it is convenient to take U(0) = 0. The kinetic energy T(x) = 1/2mv^2. Show by differentiation that the particle’s total energy (E = T +V ) is constant. Express E as a function of the particle’s (a) maximum displacement xmax and (b) maximum velocity vmax.

Solutions

Expert Solution


Related Solutions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Consider a particle of mass m moving in a two-dimensional harmonic oscillator potential : U(x,y)=...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Consider a particle of mass m moving in a two-dimensional harmonic oscillator potential : U(x,y)= 1/2 mω^2 (x^2+y^2 ) a. Use separation of variables in Cartesian coordinates to solve the Schroedinger equation for this particle. b. Write down the normalized wavefunction and energy for the ground state of this particle. c. What is the energy and degeneracy of each of the lowest 5 energy levels of this particle? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential...
Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential with natural frequency ω0. For times t > 0 a time-dependent potential of the form V1(x) = εxcos(ωt) is turned on. Assume the system starts in an initial state|n>. 1. Find the transition probability from initial state |n> to a state |n'> with n' ≠ n. 2. Find the transition rate (probability per unit time) for the transition |n>→|n'>.
Consider a Simple Harmonic Oscillator of mass m moving on africtionless horizontal surface about mean...
Consider a Simple Harmonic Oscillator of mass m moving on a frictionless horizontal surface about mean position 'O'. When the oscillator is displaced towards right by a distance 'x' , an elastic restoring force F = -kx is produced which keeps it oscillating. Keeping in view equations of Simple Harmonic Motion show that the displacement x of the oscillator at time t is given by; x =ASin (ωt + θ). (1) where A is the amplitude of oscillation and (ωt...
A particle of mass m is constrained to a circle of radius r0: that is, the...
A particle of mass m is constrained to a circle of radius r0: that is, the potential for the particle is 0 when the particle is anywhere on that circle and infinite everywhere else, ?(?) = 0 (r=r0) V(r) = ∞ (? ≠ ?0) Find the eigenvalues and normalized eigenfunctions of the Hamiltonian for a particle on a ring. What is the degeneracy of eigenvalues for this system. how many eigenfunctions are there for each eigenvalue)?
The displacement as a function of time of a 4.0kg mass spring simple harmonic oscillator is...
The displacement as a function of time of a 4.0kg mass spring simple harmonic oscillator is .   What is the displacement of the mass at 2.2 seconds? ___________m What is the spring constant? ___________________N/m What is the position of the object when the speed is maximum? ______________m What is the magnitude of the maximum velocity?____________________m/s
consider a linearly damped simple harmonic oscillator with mass m,restoring force contsant k and resistive force...
consider a linearly damped simple harmonic oscillator with mass m,restoring force contsant k and resistive force constant c.if c >sqrt(4mk), work out the expression for the displacement as a function of time and describe the predicted time dependence of the motion.
1.For a damped simple harmonic oscillator, the block has a mass of 2.3 kg and the...
1.For a damped simple harmonic oscillator, the block has a mass of 2.3 kg and the spring constant is 6.6 N/m. The damping force is given by -b(dx/dt), where b = 220 g/s. The block is pulled down 12.4 cm and released. (a) Calculate the time required for the amplitude of the resulting oscillations to fall to 1/8 of its initial value. (b) How many oscillations are made by the block in this time? 2.An oscillator consists of a block...
1. A simple harmonic oscillator consists of a block of mass 4.20 kg attached to a...
1. A simple harmonic oscillator consists of a block of mass 4.20 kg attached to a spring of spring constant 290 N/m. When t = 2.10 s, the position and velocity of the block are x = 0.141 m and v = 3.530 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s? 2. If you took your pendulum to the moon, where the acceleration...
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring of spring constant 260 N/m. When t = 1.60 s, the position and velocity of the block are x = 0.199 m and v = 3.920 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.4 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.4 kg attached to a spring of spring constant 120 N/m. When t = 0.84 s, the position and velocity of the block are x = 0.127 m and v = 3.23 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT