Question

In: Physics

Consider a system of three non-interacting particles confined by a one-dimensional harmonic oscillator potential and in...

Consider a system of three non-interacting particles confined by a one-dimensional harmonic oscillator potential and in thermal equilibrium with a total energy of 7/2 ħw.

(a) what are the possible occupation numbers for this system if the particles are bosons.

(b) what is the most probable energy for a boson picked at random from this system.

Solutions

Expert Solution

In case of any doubt please comment below.


Related Solutions

2. For a system of non-interacting, one-dimensional, distinguishable classical particles in a harmonic oscillator potential, V...
2. For a system of non-interacting, one-dimensional, distinguishable classical particles in a harmonic oscillator potential, V = kx2 in contact with a particle reservoir with chemical potential µ and a thermal reservoir at temperature T. (a) Calculate the grand partition function Z for the system. Note that there is no fixed "volume" for this system. (b) Obtain N (number of particles) and U as functions of µ and T and show that U satisfies the equipartition theorem
Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential...
Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential with natural frequency ω0. For times t > 0 a time-dependent potential of the form V1(x) = εxcos(ωt) is turned on. Assume the system starts in an initial state|n>. 1. Find the transition probability from initial state |n> to a state |n'> with n' ≠ n. 2. Find the transition rate (probability per unit time) for the transition |n>→|n'>.
Consider a three-dimensional isotropic harmonic oscillator for which the Hamiltonian is given by H = p2...
Consider a three-dimensional isotropic harmonic oscillator for which the Hamiltonian is given by H = p2 2m+ 1/2mω2r2. Use the variational method with the trial function u(r) = 1πa2 3/4 exp(−r2/2a2) and obtain E. Minimizing E with respect to a2, show that the upper bound for the ground-state energy reproduces the exact result for the energy given by a =(mω and Ea = 32ω. Substitute the above value of a in the trial function and show that it also reproduces...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Consider a particle of mass m moving in a two-dimensional harmonic oscillator potential : U(x,y)=...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Consider a particle of mass m moving in a two-dimensional harmonic oscillator potential : U(x,y)= 1/2 mω^2 (x^2+y^2 ) a. Use separation of variables in Cartesian coordinates to solve the Schroedinger equation for this particle. b. Write down the normalized wavefunction and energy for the ground state of this particle. c. What is the energy and degeneracy of each of the lowest 5 energy levels of this particle? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
consider Three-Dimensional harmonic oscillator with the same frequencies along all three directions. a) determine the wave...
consider Three-Dimensional harmonic oscillator with the same frequencies along all three directions. a) determine the wave function and the energy of the ground state. b) how many quantum numbers are needed to describe the state of oscillation? c) the degeneracy of the first excited state. express the wave function involved in the schrodinger equation as a product given by x, y, z and separate the variables.
Consider a particle that is confined by a one dimensional quadratic (harmonic) potential of the form...
Consider a particle that is confined by a one dimensional quadratic (harmonic) potential of the form U(x) = Ax2 (where A is a positive real number). a) What is the Hamiltonian of the particle (expressed as a function of velocity v and x)? b) What is the average kinetic energy of the particle (expressed as a function of T)? c) Use the Virial Theorem (Eq. 1.46) to obtain the average potential energy of the particle. d) What would the average...
Consider two non-interacting particles in an infinite square well. One is in a state ψm, the...
Consider two non-interacting particles in an infinite square well. One is in a state ψm, the other in a state ψn with n≠m. Let’s assume that ψm and ψn are the ground state and 1st excited state respectively and that the two particles are identical fermions. The well is of width 1Å. What is the probability of finding a particle in the 1st excited state in a region of width 0.01Å? Does this change if the particles are distinguishable?
7. Consider two noninteracting particles in a 1D simple harmonic oscillator (SHO) potential, which has 1-particle...
7. Consider two noninteracting particles in a 1D simple harmonic oscillator (SHO) potential, which has 1-particle spatial wavefunctions ψ n ( x), where n = 0, 1, 2, … (we ignore spin by assuming both particles have the same spin quantum number or are spin 0). These wavefunctions are normalized to 1 and satisfy ψ n * ( x)ψ m ( x)dx −∞ ∞ ∫ = 0 when n ≠ m , i.e., they are orthogonal. The energies are !ω0...
Consider an electron confined in a one-dimensional infinite potential well having a width of 0.4 nm....
Consider an electron confined in a one-dimensional infinite potential well having a width of 0.4 nm. (a) Calculate the values of three longest wavelength photons emitted by the electron as it transitions between the energy levels inside the well [3 pts.]. (b) When the electron undergoes a transition from the n = 2 to the n = 1 level, what will be its emitted energy and wavelength [2 pts.]. To which region of the electromagnetic spectrum does this wavelength belong?...
1. Consider an electron in a 1D harmonic oscillator potential. Suppose the electron is in a...
1. Consider an electron in a 1D harmonic oscillator potential. Suppose the electron is in a state which is an equal mix of the ground state and the first-excited state. a) Write the time-dependent state in Dirac notation. b) Calculate 〈x〉. Calculate 〈p〉 using raising and lower operators. c) Graph 〈x〉 as a function of time.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT