Question

In: Physics

A particle of charge q and mass m is accelerated from rest through a potential difference...

A particle of charge q and mass m is accelerated from rest through a potential difference V, after which it encounters a uniform magnetic field B perpendicular to its velocity v. If the particle moves in a plane perpendicular to B,

(a) Find an expression for the radius of its circular path in terms of q, V and B.

(b) If the particle is an electron, what must the potential difference be so it describes a circular path of radius 1.5 m in a magnetic field of 0.05 T?

Solutions

Expert Solution


Related Solutions

2) A charge is accelerated from rest through a potential difference V and then enters a...
2) A charge is accelerated from rest through a potential difference V and then enters a uniform magnetic field oriented perpendicular to its path. The field deflects the particle into a circular arc of radius R. If the accelerating potential is tripled to 3V, what will be the radius of the circular arc? 
1. A moving particle with a charge of 6.52 is accelerated through a potential difference of...
1. A moving particle with a charge of 6.52 is accelerated through a potential difference of 234mV. Find the final velocity of the particle if its initial velocity is 5.24m/s. (mass of the charged particle=154g). 2. An unpolarized beam passes through a system containing three ideal polarizers. the first polarizer is oriented with a horizontal transmission axis, the second one has its transmission axis at 70.4degrees from the horizontal, and the third filter has a vertical transmission axis. What percent...
An electron and a proton are each accelerated starting from rest through a potential difference of...
An electron and a proton are each accelerated starting from rest through a potential difference of 10 million volts. Find the momentum (in MeV/c) and the kinetic energy (in MeV) of each, and compare with the results of using the classical formulas.
1. In a system design the electrons are accelerated from rest through a potential difference of...
1. In a system design the electrons are accelerated from rest through a potential difference of 250 V. The electrons travel along a curved path because of the magnetic force exerted on them, and the radius of the path is measured to be 5 cm long. If the magnetic field is perpendicular to the beam what is the linear speed of the electrons, what is the angular speed of the electrons and what is the magnitude of the magnetic field...
An electron and a proton, starting from rest, are accelerated through an electric potential difference of...
An electron and a proton, starting from rest, are accelerated through an electric potential difference of the same magnitude. In the process, the electron acquires a speed ve, while the proton acquires a speed vp. Find the ratio ve/vp.
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference...
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference of 11.6 kV. They are moving in the +x-direction when they enter the space between the plates of a parallel plate capacitor. There is a potential difference of 320 V between the plates. The plates have length 8.93 cm and are separated by 1.10 cm. The electron beam is deflected in the negative y-direction by the electric field between the plates.    where P...
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference...
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference of 13.8 kV. They are moving in the +x-direction when they enter the space between the plates of a parallel plate capacitor. There is a potential difference of 313 V between the plates. The plates have length 7.81 cm and are separated by 1.10 cm. The electron beam is deflected in the negative y-direction by the electric field between the plates. where P =...
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference...
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference of 12.2 kV. They are moving in the +x-direction when they enter the space between the plates of a parallel plate capacitor. There is a potential difference of 338 V between the plates. The plates have length 9.37 cm and are separated by 1.10 cm. The electron beam is deflected in the negative y-direction by the electric field between the plates. where P =...
Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential...
Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential with natural frequency ω0. For times t > 0 a time-dependent potential of the form V1(x) = εxcos(ωt) is turned on. Assume the system starts in an initial state|n>. 1. Find the transition probability from initial state |n> to a state |n'> with n' ≠ n. 2. Find the transition rate (probability per unit time) for the transition |n>→|n'>.
A deuteron (charge +e, mass 2mp) is accelerated through 2.75 kV from rest and attains a...
A deuteron (charge +e, mass 2mp) is accelerated through 2.75 kV from rest and attains a final velocity in the j direction. It then enters a uniform magnetic field B= 1.64 Tk (note T = tesla) a) Determine the magnitude of the final velocity attained by the deuteron after being accelerated through the 2.75 kV potential. B) Determine the magnitude and direction of the magnetic force that the deuteron experiences just at the point of entering the uniform magnetic field?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT