Question

In: Physics

Suppose that a particle with charge q and mass m is initially at the origin with...

Suppose that a particle with charge q and mass m is initially at the origin with zero velocity in the presence of external electric and magnetic fields given by

E = (Ex, 0, Ez),

B = (0, 0, Bz).

(1) Find x(t) and draw the trajectory the particle follows in space.

Solutions

Expert Solution



Related Solutions

Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential...
Suppose a particle of mass m and charge q is in a one-dimensional harmonic oscillator potential with natural frequency ω0. For times t > 0 a time-dependent potential of the form V1(x) = εxcos(ωt) is turned on. Assume the system starts in an initial state|n>. 1. Find the transition probability from initial state |n> to a state |n'> with n' ≠ n. 2. Find the transition rate (probability per unit time) for the transition |n>→|n'>.
A particle of charge q and mass m is accelerated from rest through a potential difference...
A particle of charge q and mass m is accelerated from rest through a potential difference V, after which it encounters a uniform magnetic field B perpendicular to its velocity v. If the particle moves in a plane perpendicular to B, (a) Find an expression for the radius of its circular path in terms of q, V and B. (b) If the particle is an electron, what must the potential difference be so it describes a circular path of radius...
Particle A of charge 3.25 ✕ 10−4 C is at the origin, particle B of charge...
Particle A of charge 3.25 ✕ 10−4 C is at the origin, particle B of charge −6.20 ✕ 10−4 C is at (3.98 m, 0) and particle C of charge 1.25 ✕ 10−4 C is at (0, 3.38 m). (a) What is the x-component of the electric force exerted by A on C? N (b) What is the y-component of the force exerted by A on C? N (c) Find the magnitude of the force exerted by B on C....
Particle A of charge 3.25 ✕ 10−4 C is at the origin, particle B of charge...
Particle A of charge 3.25 ✕ 10−4 C is at the origin, particle B of charge −6.20 ✕ 10−4 C is at (3.98 m, 0) and particle C of charge 1.25 ✕ 10−4 C is at (0, 3.38 m). (e) Calculate the y-component of the force exerted by B on C. N (f) Sum the two x-components to obtain the resultant x-component of the electric force acting on C. N (g) Repeat part (f) for the y-component. N (h) Find...
There is an unknown charge  Q  at the origin.  From a location 0.40 m from the origin along the...
There is an unknown charge  Q  at the origin.  From a location 0.40 m from the origin along the y axis, I launch a charged particle in the x direction with a speed of 15 m/s, and it goes in a circle.  The particle’s charge is 1.0×10-6 C and its mass is 0.20 kg. (a) [15 pts.] What is the charge Q? (b) [4 pts.] If I launched the particle at 20 m/s, instead of 15 m/s, would it come back or would it...
Problem 2: A particle with charge q is emitted from the origin with momentum p directed...
Problem 2: A particle with charge q is emitted from the origin with momentum p directed at an angle ? to a uniform magnetic field B which lies in the z-direction. i) What is the position of the particle as a function of time? ii) At what point does the particle next intersect the z-axis?
A charge +Q is located at the origin and a second charge, +6 Q , is...
A charge +Q is located at the origin and a second charge, +6 Q , is at distance d on the x-axis. Part A Where should a third charge, q, be placed, so that all three charges will be in equilibrium? Express your answer numerically as a multiple of d Part C What should be its magnitude, so that all three charges will be in equilibrium? Express your answer numerically as a multiple of Q
Particle A of charge 2.97 10-4 C is at the origin, particle B of charge -5.58...
Particle A of charge 2.97 10-4 C is at the origin, particle B of charge -5.58 10-4 C is at (4.00 m, 0), and particle C of charge 1.10 10-4 C is at (0, 3.00 m). We wish to find the net electric force on C. (a) What is the x component of the electric force exerted by A on C? N (b) What is the y component of the force exerted by A on C? N (c) Find the...
A particle of mass m orbits around the origin (0,0) in a circular path of radius...
A particle of mass m orbits around the origin (0,0) in a circular path of radius r. (a) Write the classical Hamiltonian (energy) of this system in terms of angular momentum of the particle. (b) Write the Schrodinger equation for this system. (c) Find the energy eigenvalues and their corresponding (normalized) wavefunctions.
A particle of charge -q1 is at the origin of an x axis. (a) At what...
A particle of charge -q1 is at the origin of an x axis. (a) At what location on the axis should a particle of charge -36q1 be placed so that the net electric field is zero at x = 4.8 mm on the axis? (b) If, instead, a particle of charge +36q1 is placed at that location, what is the direction (relative to the positive direction of the x axis) of the net electric field at x = 4.8 mm?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT