Question

In: Physics

Assuming that a neutron confined to a nucleus can be modeled as a one-dimensional infinite square...

Assuming that a neutron confined to a nucleus can be modeled as a one-dimensional infinite square well with width 10*10^-15m, answer the following:

a. What is the minimum energy of the neutron (in MeV)?

b. What would the minimum energy of an electron in the nucleus be? Based on this result, could an electron be contained in a nucleus? Explain.

Solutions

Expert Solution


Related Solutions

A particle in an infinite one-dimensional square well is in the ground state with an energy...
A particle in an infinite one-dimensional square well is in the ground state with an energy of 2.23 eV. a) If the particle is an electron, what is the size of the box? b) How much energy must be added to the particle to reach the 3rd excited state (n = 4)? c) If the particle is a proton, what is the size of the box? d) For a proton, how does your answer b) change?
Consider an electron confined in a one-dimensional infinite potential well having a width of 0.4 nm....
Consider an electron confined in a one-dimensional infinite potential well having a width of 0.4 nm. (a) Calculate the values of three longest wavelength photons emitted by the electron as it transitions between the energy levels inside the well [3 pts.]. (b) When the electron undergoes a transition from the n = 2 to the n = 1 level, what will be its emitted energy and wavelength [2 pts.]. To which region of the electromagnetic spectrum does this wavelength belong?...
In a single neutron induced fission of a 23592U nucleus, one of the fission products is...
In a single neutron induced fission of a 23592U nucleus, one of the fission products is 9942Mo. The second fission product is not identified, but it is known that it has a binding energy of 1083.7 MeV. 3 neutrons are released. Use the following data: mn=1.008665 u, mp=1.007276 u, mU−235=235.0439 u, mMo−99=98.9077 u i) What is the mass of the second fission product? ii) What is the amount of energy released in this fission reaction? please make your writing clear...
An electron is confined in a 3.0 nm long one dimensional box. The electron in this...
An electron is confined in a 3.0 nm long one dimensional box. The electron in this energy state has a wavelength of 1.0 nm. a) What is the quantum number of this electron? b) What is the ground state energy of this electron in a box c) What is the photon wavelength that is emitted in a transition from the energy level in part a to the first excited state?
*One dimensional infinite potential well - probability at a location An electron moving in a one-...
*One dimensional infinite potential well - probability at a location An electron moving in a one- dimensional infinite square well of width L is trapped in the n = 1 state. Compute the probability of finding the electron within the "volume" ?x = 0.019 L at 0.55 L to three decimal places.
Consider a particle of mass m confined to a one-dimensional box of length L and in...
Consider a particle of mass m confined to a one-dimensional box of length L and in a state with normalized wavefunction. For a partide in a box the energy is given by En = n2h2/8mL2 and, because the potential energy is zero, all of this energy is kinetic. Use this observation and, without evaluating any integrals, explain why < px2>= n2h2/4L2
Suppose the electron in a hydrogen atom is modeled as an electron in a one-dimensional box...
Suppose the electron in a hydrogen atom is modeled as an electron in a one-dimensional box of length equal to the Bohr diameter, 2a0. What would be the ground-state energy of this "atom"? ______________eV
Find the lowest two "threefold degenerate excited states" of the three-dimensional infinite square well potential for...
Find the lowest two "threefold degenerate excited states" of the three-dimensional infinite square well potential for a cubical "box." Express your answers in terms of the three quantum numbers (n1, n2, n3). Express the energy of the two excited degenerate states that you found as a multiple of the ground state (1,1,1) energy. Would these degeneracies be "broken" if the box was not cubical? Explain your answer with an example!
Derive an one-dimensional neutron transport equation from the equation above, a steady-state neutron transport equation applying...
Derive an one-dimensional neutron transport equation from the equation above, a steady-state neutron transport equation applying to the one-dimensional slab geometry.
Consider a system of three non-interacting particles confined by a one-dimensional harmonic oscillator potential and in...
Consider a system of three non-interacting particles confined by a one-dimensional harmonic oscillator potential and in thermal equilibrium with a total energy of 7/2 ħw. (a) what are the possible occupation numbers for this system if the particles are bosons. (b) what is the most probable energy for a boson picked at random from this system.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT