Question

In: Physics

A particle in an infinite one-dimensional square well is in the ground state with an energy...

A particle in an infinite one-dimensional square well is in the ground state with an energy of 2.23 eV.

a) If the particle is an electron, what is the size of the box?

b) How much energy must be added to the particle to reach the 3rd excited state (n = 4)?

c) If the particle is a proton, what is the size of the box? d) For a proton, how does your answer b) change?

Solutions

Expert Solution


Related Solutions

A particle in a 3-dimensional infinite square-well potential has ground-state energy 4.3 eV. Calculate the energies...
A particle in a 3-dimensional infinite square-well potential has ground-state energy 4.3 eV. Calculate the energies of the next two levels. Also indicate the degeneracy of the levels.
An electron is in the ground state of an infinite square well. The energy of the...
An electron is in the ground state of an infinite square well. The energy of the ground state is E1 = 1.35 eV. (a) What wavelength of electromagnetic radiation would be needed to excite the electron to the n = 4 state? nm (b) What is the width of the square well? nm
Find the energy spectrum of a particle in the infinite square well, with potential U(x) →...
Find the energy spectrum of a particle in the infinite square well, with potential U(x) → ∞ for |x| > L and U(x) = αδ(x) for |x| < L. Demonstrate that in the limit α ≫ hbar^2/mL, the low energy part of the spectrum consists of a set of closely-positioned pairs of energy levels for α > 0. What is the structure of energy spectrum for α < 0?
For the infinite square-well potential, find the probability that a particle in its second excited state...
For the infinite square-well potential, find the probability that a particle in its second excited state is in each third of the one-dimensional box: 0?x?L/3 L/3?x?2L/3 2L/3?x?L There's already an answer on the site saying that the wavefunction is equal to ?(2/L)sin(2?x/L). My professor gave us this equation, but also gave us the equation as wavefunction = Asin(kx)+Bcos(kx), for specific use when solving an infinite potential well. How do I know which equation to use and when? Thanks
For the infinite square-well potential, find the probability that a particle in its fifth excited state...
For the infinite square-well potential, find the probability that a particle in its fifth excited state is in each third of the one-dimensional box: ----------------(0 ≤ x ≤ L/3) ----------------(L/3 ≤ x ≤ 2L/3) ------------------(2L/3 ≤ x ≤ L)
Consider a particle in an infinite square well, but instead of having the well from 0...
Consider a particle in an infinite square well, but instead of having the well from 0 to L as we have done in the past, it is now centered at 0 and the walls are at x = −L/2 and x = L/2. (a) Draw the first four energy eigenstates of this well. (b) Write the eigenfunctions for each of these eigenstates. (c) What are the energy eigenvalues for this system? (d) Can you find a general expression for the...
Consider a particle of mass ? in an infinite square well of width ?. Its wave...
Consider a particle of mass ? in an infinite square well of width ?. Its wave function at time t = 0 is a superposition of the third and fourth energy eigenstates as follows: ? (?, 0) = ? 3i?­3(?)+ ?­4(?) (Find A by normalizing ?(?, 0).) (Find ?(?, ?).) Find energy expectation value, <E> at time ? = 0. You should not need to evaluate any integrals. Is <E> time dependent? Use qualitative reasoning to justify. If you measure...
Consider two non-interacting particles in an infinite square well. One is in a state ψm, the...
Consider two non-interacting particles in an infinite square well. One is in a state ψm, the other in a state ψn with n≠m. Let’s assume that ψm and ψn are the ground state and 1st excited state respectively and that the two particles are identical fermions. The well is of width 1Å. What is the probability of finding a particle in the 1st excited state in a region of width 0.01Å? Does this change if the particles are distinguishable?
A particle in the infinite square well (width a) starts out being equally likely to be...
A particle in the infinite square well (width a) starts out being equally likely to be found in the first and last third of the well and zero in the middle third. What is the initial (t=0) wave function? Find A and graph the initial wave function. What is the expectation value of x? Show your calculation for the expectation value of x, but then say why you could have just written down the answer. Will you ever find the...
For a particle in an infinite potential well the separation between energy states increases as n...
For a particle in an infinite potential well the separation between energy states increases as n increases (see Eq. 38-13). But doesn’t the correspondence principle require closer spacing between states as n increases so as to approach a classical (nonquantized) situation? Explain.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT