Question

In: Physics

Suppose the electron in a hydrogen atom is modeled as an electron in a one-dimensional box...

Suppose the electron in a hydrogen atom is modeled as an electron in a one-dimensional box of length equal to the Bohr diameter, 2a0. What would be the ground-state energy of this "atom"?
______________eV

Solutions

Expert Solution

With the following data:

  • Length of the box : L = 2 a o  
  • a o is bohr radius -- 0.0529 nm --   

Allowed energy of a particle in one dimensional box is

               E n = n 2 h 2 / 8 m L 2     

Where   m is mass electron and h is plancks constant

Ground state energy of the atom is:

           E =   h 2 / 8 m L 2    

               = ( 6.635 *10 -34 Js ) 2 / ( 8)(9.11*10-31 kg ) ( 2*0.0529 *10-9 ) 2  

               =  53.963*10-19 J

               = 33.7273 eV

Actual ground state energy of hydrogen atom is: -13.6 eV

Diving:

              33.7273 / 13.6   = 2.4799 times


Related Solutions

An electron is confined in a 3.0 nm long one dimensional box. The electron in this...
An electron is confined in a 3.0 nm long one dimensional box. The electron in this energy state has a wavelength of 1.0 nm. a) What is the quantum number of this electron? b) What is the ground state energy of this electron in a box c) What is the photon wavelength that is emitted in a transition from the energy level in part a to the first excited state?
Early 20th-century physicist Niels Bohr modeled the hydrogen atom as an electron orbiting a proton in...
Early 20th-century physicist Niels Bohr modeled the hydrogen atom as an electron orbiting a proton in one or another well-defined circular orbit. When the electron followed its smallest possible orbit, the atom was said to be in its ground state. (a) When the hydrogen atom is in its ground state, what orbital speed (in m/s) does the Bohr model predict for the electron? m/s (b) When the hydrogen atom is in its ground state, what kinetic energy (in eV) does...
A standard hydrogen atom consists of one proton and one electron. The net electric charge of the hydrogen atom is equal to
A standard hydrogen atom consists of one proton and one electron. The net electric charge of the hydrogen atom is equal toGroup of answer choices1.6 x 10-19 C.3.2 x 10-19 C.4.8 x 10-19 C.6.4 x 10-19 C.zero.
What is the length of a one-dimensional box in which an electron in the n =...
What is the length of a one-dimensional box in which an electron in the n = 1, state has the same energy as a photon with a wavelength of 600 nm? What is the energy of n = 2 and n =3 state? What energy of a photon, if absorbed by the electron could move it from the n = 1 state to the n = 2 state? Write legibly.
Suppose a photon is absorbed by the electron in a hydrogen atom in an n= 2...
Suppose a photon is absorbed by the electron in a hydrogen atom in an n= 2 state. What wavelength should the photon have to enable the electron to transition to the n= 4 state? Once the photon is absorbed, what are the various wavelengths of photons that could be emitted by the atom? (Use Bohr approximation).
In one model of the hydrogen atom, an electron orbits a proton in a circle of...
In one model of the hydrogen atom, an electron orbits a proton in a circle of radius 5.28×10-11 m with a speed of 2.18×106 m/s. What is the acceleration of the electron in this model? What is the period of the motion?
1. Calculate the probability of locating an electron in a one-dimensional box of length 2.00 nm...
1. Calculate the probability of locating an electron in a one-dimensional box of length 2.00 nm and nx=4 between 0 and 0.286 nm. The probability is also plotted. You should compare (qualitatively) your numerical answer to the area under the curve on the graph that corresponds to the probability.
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a transition to the n=3 state. Then it returns to the ground state by emitting two photons when going to n=2 and then n=1 states. A. What are the wavelengths of these photons? B. What will be the wavelength if only one photon is emitted? C. What is the maximum number of electrons with ml=3 in the shell with n=5? D. How many electrons with...
Consider a hydrogen atom with its electron in the nth orbital.
Consider a hydrogen atom with its electron in the nth orbital. Electromagnetic radiation of wavelength 90 nm is used to ionize the atom. If the kinetic energy of the ejected electron is 10.4 eV, then the value of n is (hc = 1242 eV nm).
In a hydrogen atom, how might an electron move from one energy level to another?
In a hydrogen atom, how might an electron move from one energy level to another?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT