Question

In: Advanced Math

u''-2u'-8u=0 u(0)= α, u'(0)=2π y''+9y'=cosπt, y(0)=0, y'(0)=1

u''-2u'-8u=0 u(0)= α, u'(0)=2π

y''+9y'=cosπt, y(0)=0, y'(0)=1

Solutions

Expert Solution


Related Solutions

y"´-9y"+26y´-24y=1 y(0)=y´(0)=y"(0)=1
y"´-9y"+26y´-24y=1 y(0)=y´(0)=y"(0)=1
Si U=(x2+y2+z2)-1/2 , demuestre que ∂2U/∂x2+∂2U/∂y2+∂2U/∂z2=0
Si U=(x2+y2+z2)-1/2 , demuestre que ∂2U/∂x2+∂2U/∂y2+∂2U/∂z2=0
Please find a solution to the following: Δu=0, 1<r<4, 0≤θ<2π u(1,θ)=cos5*θ, 0<θ<2π u(4,θ)=sin4*θ, 0<θ<2π
Please find a solution to the following: Δu=0, 1<r<4, 0≤θ<2π u(1,θ)=cos5*θ, 0<θ<2π u(4,θ)=sin4*θ, 0<θ<2π
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
Find y as a function of t if 100y′′−9y=0100y″−9y=0 with y(0)=3,y′(0)=8.
Find y as a function of t if 100y′′−9y=0100y″−9y=0 with y(0)=3,y′(0)=8.
(1 point) Find yy as a function of xx if y‴+9y′=0,y‴+9y′=0, y(0)=−2,  y′(0)=24,  y″(0)=−18.y(0)=−2,  y′(0)=24,  y″(0)=−18. y(x)= ?
(1 point) Find yy as a function of xx if y‴+9y′=0,y‴+9y′=0, y(0)=−2,  y′(0)=24,  y″(0)=−18.y(0)=−2,  y′(0)=24,  y″(0)=−18. y(x)= ?
find the general solution of the given differential equation. 1. y''+2y'−3y=0 2.  6y''−y'−y=0 3.  y''+5y' =0 4.  y''−9y'+9y=0
find the general solution of the given differential equation. 1. y''+2y'−3y=0 2.  6y''−y'−y=0 3.  y''+5y' =0 4.  y''−9y'+9y=0
7. Find the solution of the following PDEs: ut−16uxx =0 u(0,t) = u(2π,t) = 0 u(x,...
7. Find the solution of the following PDEs: ut−16uxx =0 u(0,t) = u(2π,t) = 0 u(x, 0) = π/2 − |x − π/2|
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT