Question

In: Math

Si U=(x2+y2+z2)-1/2 , demuestre que ∂2U/∂x2+∂2U/∂y2+∂2U/∂z2=0

  1. Si U=(x2+y2+z2)-1/2 , demuestre que 2U/x2+2U/y2+2U/z2=0

Solutions

Expert Solution


Related Solutions

Consider the unit sphere x2 +y2 +z2 = 1 and the cone (z+√2)2 = x2 +y2....
Consider the unit sphere x2 +y2 +z2 = 1 and the cone (z+√2)2 = x2 +y2. Show that these surfaces are tangent where they intersect, that is, for a point on the intersection, these surfaces have the same tangent plane
Let H be the hemisphere x2 + y2 + z2 = 66, z ≥ 0, and...
Let H be the hemisphere x2 + y2 + z2 = 66, z ≥ 0, and suppose f is a continuous function with f(4, 5, 5) = 5, f(4, −5, 5) = 11, f(−4, 5, 5) = 12, and f(−4, −5, 5) = 15. By dividing H into four patches, estimate the value below. (Round your answer to the nearest whole number.) H f(x, y, z) dS
Let  F= (x2 + y + 2 + z2) i + (exp( x2 ) + y2) j...
Let  F= (x2 + y + 2 + z2) i + (exp( x2 ) + y2) j + (3 + x) k . Let a > 0  and let S be part of the spherical surface x2 + y2 + z2 = 2az + 15a2 that is above the x-y plane and the disk formed in the x-y plane by the circular intersection between the sphere and the plane. Find the flux of F outward across S.
Solve the wave equation ∂2u/∂t2 = 4 ∂2u/∂x2 , 0 < x < 2, t >...
Solve the wave equation ∂2u/∂t2 = 4 ∂2u/∂x2 , 0 < x < 2, t > 0 subject to the following boundary and initial conditions. u(0, t) = 0, u(2, t) = 0, u(x, 0) = { x, 0 < x ≤ 1 2 − x, 1 < x < 2 , ut(x, 0) = 0
u''-2u'-8u=0 u(0)= α, u'(0)=2π y''+9y'=cosπt, y(0)=0, y'(0)=1
u''-2u'-8u=0 u(0)= α, u'(0)=2π y''+9y'=cosπt, y(0)=0, y'(0)=1
Solve the wave equation, a2  ∂2u ∂x2 = ∂2u ∂t2 0 < x < L, t...
Solve the wave equation, a2  ∂2u ∂x2 = ∂2u ∂t2 0 < x < L, t > 0 (see (1) in Section 12.4) subject to the given conditions. u(0, t) = 0, u(π, t) = 0, t > 0 u(x, 0) = 0.01 sin(9πx), ∂u ∂t t = 0 = 0, 0 < x < π u(x, t) = + ∞ n = 1
Use Polar coordinates to find the volume inside the sphere x2 + y2 + z2 =...
Use Polar coordinates to find the volume inside the sphere x2 + y2 + z2 = 16 and outside the cone z2 = 3x2 +3y2.
Evaluate the following integral, ∫ ∫ S (x2 + y2 + z2) dS, where S is...
Evaluate the following integral, ∫ ∫ S (x2 + y2 + z2) dS, where S is the part of the cylinder x2 + y2  =  64 between the planes z  =  0 and z  =  7, together with its top and bottom disks.
If C is the part of the circle (x2)2+(y2)2=1(x2)2+(y2)2=1 in the first quadrant, find the following...
If C is the part of the circle (x2)2+(y2)2=1(x2)2+(y2)2=1 in the first quadrant, find the following line integral with respect to arc length. ∫C(8x−6y)ds
Find the volume of the solid enclosed by the two paraboloids y=x2+z2y=x2+z2 and y=2−x2−z2y=2−x2−z2.
Find the volume of the solid enclosed by the two paraboloids y=x2+z2y=x2+z2 and y=2−x2−z2y=2−x2−z2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT