Question

In: Advanced Math

7. Find the solution of the following PDEs: ut−16uxx =0 u(0,t) = u(2π,t) = 0 u(x,...

7. Find the solution of the following PDEs:
ut−16uxx =0
u(0,t) = u(2π,t) = 0

u(x, 0) = π/2 − |x − π/2|

Solutions

Expert Solution

thumbs up


Related Solutions

Please solve the following: ut=uxx, 0<x<1, t>0 u(0,t)=0, u(1,t)=A, t>0 u(x,0)=cosx, 0<x<1
Please solve the following: ut=uxx, 0<x<1, t>0 u(0,t)=0, u(1,t)=A, t>0 u(x,0)=cosx, 0<x<1
Find the unique solution u of the parabolic boundary value problem Ut −Uxx =e^(−t)*sin(3x), 0<x<π, t>0,...
Find the unique solution u of the parabolic boundary value problem Ut −Uxx =e^(−t)*sin(3x), 0<x<π, t>0, U(0,t) = U(π,t) = 0, t > 0, U(x, 0) = e^(π), 0 ≤ x ≤ π.
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
(PDE) Find the series soln to Ut=Uxx on -2<x<2, T>0 with Dirichlet boundary { U(t,-2)=0=U(t, 2)...
(PDE) Find the series soln to Ut=Uxx on -2<x<2, T>0 with Dirichlet boundary { U(t,-2)=0=U(t, 2) initial condition { U(0,x) = { x, IxI <1
Find the solution to the heat equation on 0 < x < l, with u(0, t)...
Find the solution to the heat equation on 0 < x < l, with u(0, t) = 0, ux(l, t) = 0, and u(x, 0) = phi(x). This is sometimes called a "mixed" boundary condition.
Solve the Boundary Value Problem, PDE: Utt-a2uxx=0, 0≤x≤1, 0≤t<∞ BCs: u(0,t)=0 u(1,t)=cos(t) u(x,0)=0 ut(x,0)=0
Solve the Boundary Value Problem, PDE: Utt-a2uxx=0, 0≤x≤1, 0≤t<∞ BCs: u(0,t)=0 u(1,t)=cos(t) u(x,0)=0 ut(x,0)=0
Please find a solution to the following: Δu=0, 1<r<4, 0≤θ<2π u(1,θ)=cos5*θ, 0<θ<2π u(4,θ)=sin4*θ, 0<θ<2π
Please find a solution to the following: Δu=0, 1<r<4, 0≤θ<2π u(1,θ)=cos5*θ, 0<θ<2π u(4,θ)=sin4*θ, 0<θ<2π
Let f (t)  = { 7 0  ≤  t  ≤  2π cos(5t) 2π  <  t  ≤ ...
Let f (t)  = { 7 0  ≤  t  ≤  2π cos(5t) 2π  <  t  ≤  4π e3(t−4π) t  >  4π (a)  f (t) can be written in the form g1(t)  +  g2(t)U(t − 2π)  +  g3(t)U(t − 4π) where U(t) is the Heaviside function. Enter the functions g1(t), g2(t), and g3(t), into the answer box below (in that order), separated with commas. (b) Compute the Laplace transform of  f (t).
Solve the following initial value problems: a) ut+xux= -tu, x is in R, t>0; u(x,0) =f(x),...
Solve the following initial value problems: a) ut+xux= -tu, x is in R, t>0; u(x,0) =f(x), x is in R. c) ut+ux=-tu, x is in R, t>0; u(x,0)=f(x), x is in R d)2ut+ux = -2u, x,t in R, t>0; u(x,t)=f(x,t) on the straight line x = t, where f is a given function.
Suppose u(t,x)solves the initial value problem Utt = 4Uxx + sin(wt) cos(x), u(0,x)= 0 , Ut(0,x)...
Suppose u(t,x)solves the initial value problem Utt = 4Uxx + sin(wt) cos(x), u(0,x)= 0 , Ut(0,x) = 0. Is h(t) = u(t,0) a periodic function? (PDE)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT