Question

In: Mechanical Engineering

Air flows in a pipe under fully developed conditions with an average velocity of 1.25 m/s...

Air flows in a pipe under fully developed conditions with an average velocity of 1.25 m/s and a temperature of 16°C. The pipe’s inner diameter is 4 cm, and its length is 4 m. The first half of the pipe is kept at a constant wall temperature of 100°C. The second half of the pipe is subjected to a constant heat flux of 200 W. The properties of air at 80°C are ρ = 0.9994 kg/m3, k = 0.02953 W/m·K, v = 2.097 × 10–5 m2/s, cp = 1008 J/kg·K, and Pr = 0.7154.

Determine the wall temperature at the exit of the tube.

Solutions

Expert Solution

please upvote

if doubt please comment


Related Solutions

1. If argon has an average velocity under certain conditions of 498 m/s, what is the...
1. If argon has an average velocity under certain conditions of 498 m/s, what is the average velocity of helium atoms under the same conditions? 2. How many times faster will the velocity of hydrogen molecule be than a molecule of carbon dioxide at the same temperature?
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the...
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the stagnation temperature is 90°C. If the Mach number at the exit is 0.3, determine the direction and the rate of heat transfer. For the same conditions at the inlet, determine the amount of heat that must be transferred to the system if the flow is to be sonic at the exit of the duct.
Air at 20°C and a velocity of 8 m/s flows over the 4-m length of a...
Air at 20°C and a velocity of 8 m/s flows over the 4-m length of a 4-m wide single surface of a square plate whose temperature is 80°C. (For properties of air, use k = 0.02735 W/m·K, Pr = 0.7228, ν = 1.798 x 10-5 m2 /s ) Given the above information, do the calculations to answer the two MC questions below. Please clearly show/discuss your solution method and calculations. A. __________The rate of heat transfer, Q̇ , from this...
Air flows into a commercial steel pipe of 5 cm ID at 70 m/s. The inlet...
Air flows into a commercial steel pipe of 5 cm ID at 70 m/s. The inlet pressure and temperature of the air are 1 MPa and 100?C, respectively. a) Determine the Mach number at a distance 60 m down the pipe if the flow is adiabatic. b) Calculate the temperature at the same point. How would you comment on the assumption of constant Re, hence constant f, along the pipe by considering the temperature variation?
Air flows down a pipe with a diameter of 0.15 m. At the inlet to the...
Air flows down a pipe with a diameter of 0.15 m. At the inlet to the pipe, the Mach number is 0.1, the pressure is 70 kPa, and the temperature is 35°C. If the flow can be assumed to be adiabatic and if the mean friction factor is 0.005, determine the length of the pipe if the Mach number at the exit is 0.6. Also, find the pressure and temperature at the exit to the pipe.
a) Kinetic theory. The speed of sound in the air is 330 m/s under standard conditions...
a) Kinetic theory. The speed of sound in the air is 330 m/s under standard conditions of temperature and pressure (273 K and 1 atm). Since the size of a molecule is much smaller than the average distance between the molecules, this number provides an estimate of the order of magnitude of the molecular media velocity. Consider a cubic meter of air and concentrate it on a N2 molecule that travels in the x direction at 330 m / s....
Air flows in a pipe with a diameter, D=50 mm. The inlet conditions are: M1 =...
Air flows in a pipe with a diameter, D=50 mm. The inlet conditions are: M1 = 3; total pressure, P01 = 1000 kPa absolute; and temperature, T1 = 550 K. The friction coefficient is, f = 0.004. The exit Mach number decreases with the length of the pipe. Plot the following while the exit Mach number to be changed from 2.5 to 0.99 with decrements of ?M=0.01: a) L, length of the pipe that is going to give the desired...
Air flows over a 4 meter long flat plate at a velocity of 8 m/s. Using...
Air flows over a 4 meter long flat plate at a velocity of 8 m/s. Using a spreadsheet, calculate the boundary layer thickness and wall shear stress at 0.1 meter intervals along the plate. Do not plot the wall shear stress at x=0. Use a transition Reynolds number of 5 x 10^5 . (You will need to calculate Rex at each location to determine if the laminar or turbulent correlations should be used.) Generate a spreadsheet table that includes columns...
Air at 25°C flows over a 10-mm-diameter sphere with a velocity of 20 m/s, while the...
Air at 25°C flows over a 10-mm-diameter sphere with a velocity of 20 m/s, while the surface of the sphere is maintained at 75°C. What is the rate of heat transfer from the sphere? q = ___ W ? Please provide correct final answer for guaranteed thumbs up rating !
Air flows through a pipe that has a length of 45 m with an inside diameter...
Air flows through a pipe that has a length of 45 m with an inside diameter of 0.025 m. The Mach number of the flow exiting the pipe is 0.26, with a static pressure of 1 atmosphere and a temperature of 300 K. If the friction factor is assumed constant at 0.007, calculate the Mach number, static pressure, static temperature and total pressure at the entrance.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT