In: Statistics and Probability
For a normal distribution where μ = 100 and σ = 10, what is the probability of: 1. P (X> 80) = 2. P (95 <X <105) = 3. P (X <50) = 4. P (X <100) = 5. P (X <90 and X> 110) = 6.P (X> 150) =
Solution :
Given that ,
mean = = 100
standard deviation = = 10
(1)
P(x > 80) = 1 - P(x < 80)
= 1 - P[(x - ) / < (80 - 100) / 10]
= 1 - P(z < -2)
= 0.9772
(2)
P(95 < x < 105) = P[(95 - 100)/ 10) < (x - ) / < (105 - 100) / 10) ]
= P(-0.5 < z < 0.5)
= P(z < 0.5) - P(z < -0.5)
= 0.3829
(3)
P(x < 50) = P[(x - ) / < (50 - 100) / 10]
= P(z < -5)
= 0
(4)
P(x < 100) = P[(x - ) / < (100 - 100) / 10]
= P(z < 0)
= 0.5
(5)
1 - P[(90 - 100)/ 10) < (x - ) / < (110 - 100) / 10) ]
= 1 - P(-1 < z < 1)
= 0.3173
(6)
P(x > 150) = 1 - P(x < 150)
= 1 - P[(x - ) / < (150 - 100) / 10]
= 1 - P(z < 5)
= 0