Question

In: Statistics and Probability

We have a normal probability distribution for variable x with μ = 24.8 and σ =...

We have a normal probability distribution for variable x with μ = 24.8 and σ = 3.7. For each of the following, make a pencil sketch of the distribution & your finding. Using 5 decimals, find: (a)[1] PDF(x = 30);   [use NORM.DIST(•,•,•,0)]

(b)[1] P(x ≤ 27);   [use NORM.DIST(•,•,•,1)]

(c)[1] P(x ≥ 21);   [elaborate, then use NORM.DIST(•,•,•,1)]

(d)[2] P(22 ≤ x ≤ 26);   [elaborate, then use NORM.DIST(•,•,•,1)]

(e)[3] P(20 ≤ x ≤ 28);   [z‐scores, then use NORM.S.DIST(•,1)]

(f)[1] x* so that P(x ≥ x*) = 0.05; [use NORM.INV(•,•,•)]

(g)[1] x** so that P(x ≤ x**) = 0.1. [use NORM.INV(•,•,•)]

Solutions

Expert Solution


Related Solutions

Given a random variable X having a normal distribution with μ=50, and σ =10. The probability...
Given a random variable X having a normal distribution with μ=50, and σ =10. The probability that Z assumes a value between 45 and 62 is: ___________.
For a normal distribution where μ = 100 and σ = 10, what is the probability...
For a normal distribution where μ = 100 and σ = 10, what is the probability of: 1. P (X> 80) = 2. P (95 <X <105) = 3. P (X <50) = 4. P (X <100) = 5. P (X <90 and X> 110) = 6.P (X> 150) =
Let μ=E(X), σ=stanard deviation of X. Find the probability P(μ-σ ≤ X ≤ μ+σ) if X...
Let μ=E(X), σ=stanard deviation of X. Find the probability P(μ-σ ≤ X ≤ μ+σ) if X has... (Round all your answers to 4 decimal places.) a. ... a Binomial distribution with n=23 and p=1/10 b. ... a Geometric distribution with p = 0.19. c. ... a Poisson distribution with λ = 6.8.
Given that x is a normal variable with mean μ = 49 and standard deviation σ...
Given that x is a normal variable with mean μ = 49 and standard deviation σ = 6.2, find the following probabilities. (Round your answers to four decimal places.) (a)  P(x ≤ 60) (b)  P(x ≥ 50) (c)  P(50 ≤ x ≤ 60)
Given that x is a normal variable with mean μ = 43 and standard deviation σ...
Given that x is a normal variable with mean μ = 43 and standard deviation σ = 6.9, find the following probabilities. (Round your answers to four decimal places.) (a) P(x ≤ 60) (b) P(x ≥ 50) (c) P(50 ≤ x ≤ 60)
Given that x is a normal variable with mean μ = 107 and standard deviation σ...
Given that x is a normal variable with mean μ = 107 and standard deviation σ = 11, find the following probabilities. (Round your answers to four decimal places.) (a)  P(x ≤ 120) (b)  P(x ≥ 80) (c)  P(108 ≤ x ≤ 117)
Suppose X is a normal random variable with μ = 600 and σ = 89. Find...
Suppose X is a normal random variable with μ = 600 and σ = 89. Find the values of the following probabilities. (Round your answers to four decimal places.) (a) P(X < 700) (b) P(X > 350) (c) P(300 < X < 900)
Suppose X is a normal random variable with μ = 350 and σ = 40. Find...
Suppose X is a normal random variable with μ = 350 and σ = 40. Find the values of the following probabilities. (Round your answers to four decimal places.) (a) P(X < 468) (b) P(390 < X < 454) (c) P(X > 390)
Given that x is a normal variable with mean μ = 49 and standard deviation σ...
Given that x is a normal variable with mean μ = 49 and standard deviation σ = 6.9, find the following probabilities. (Round your answers to four decimal places.) (a)  P(x ≤ 60) (b)  P(x ≥ 50) (c)  P(50 ≤ x ≤ 60)
Given that x is a normal variable with mean μ = 108 and standard deviation σ...
Given that x is a normal variable with mean μ = 108 and standard deviation σ = 14, find the following probabilities. (Round your answers to four decimal places.) (a) P(x ≤ 120) (b) P(x ≥ 80) (c) P(108 ≤ x ≤ 117)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT