In: Operations Management
Consider the following work breakdown structure: What is the probability of finishing the project at exactly 201 days?
| 
 Time Estimates (days)  | 
||||||||||
| 
 Activity  | 
 Precedes  | 
 Optimistic  | 
 Most Likely  | 
 Pessimistic  | 
||||||
| 
 Start  | 
 A,B  | 
 -  | 
 -  | 
 -  | 
||||||
| 
 A  | 
 C,D  | 
 44  | 
 50  | 
 56  | 
||||||
| 
 B  | 
 D  | 
 45  | 
 60  | 
 75  | 
||||||
| 
 C  | 
 E  | 
 42  | 
 45  | 
 48  | 
||||||
| 
 D  | 
 F  | 
 31  | 
 40  | 
 49  | 
||||||
| 
 E  | 
 F  | 
 27  | 
 36  | 
 39  | 
||||||
| 
 F  | 
 End  | 
 58  | 
 70  | 
 82  | 
||||||
| 
 1.  | 
||
| 
 0.  | 
||
| 
 0.9.  | 
||
| 
 0.6.  | 
||
| 
 2.5.  | 
Answer: 0.6
Explanation:
| Activity | Optimistic time-a | Expected completion time-m | Pessimistic time-b | Expected time= (a+4*m+ b)/6 | Variance, (sigma)^2= (b-a/6)^2 | 
| A | 44 | 50 | 56 | 50.00 | 4.00 | 
| B | 45 | 60 | 75 | 60.00 | 25.00 | 
| C | 42 | 45 | 48 | 45.00 | 1.00 | 
| D | 31 | 40 | 49 | 40.00 | 9.00 | 
| E | 27 | 36 | 39 | 35.00 | 4.00 | 
| F | 58 | 70 | 82 | 70.00 | 16.00 | 
Paths
| Paths | Duration | Variance | 
| ACEF | 200.00 | 25.00 | 
| ADF | 160.00 | |
| BDF | 170.00 | 
| ACEF is the longest path (critical path) with a variance of 25 | 
to find the probability for 201 days
| step 1 | we will find the variance of the tasks which lie on critical path | 25.00 | |||
| step 2 | mean project time (u) of critical path is= | 200 | |||
| step 3 | Required completion time is | 201 days | |||
| step 4 | standard deviation= sqrt(variance)= | 5.000 | |||
| step 5 | because Z= (given completion time- u)/standard deviation | 0.200 | |||
| step 6 | P(z)= using NORM.S.DIST(z,true) | 0.5793 ~0.6 |