In: Operations Management
Consider the following work breakdown structure: What is the probability of finishing the project at exactly 201 days?
Time Estimates (days) |
||||||||||
Activity |
Precedes |
Optimistic |
Most Likely |
Pessimistic |
||||||
Start |
A,B |
- |
- |
- |
||||||
A |
C,D |
44 |
50 |
56 |
||||||
B |
D |
45 |
60 |
75 |
||||||
C |
E |
42 |
45 |
48 |
||||||
D |
F |
31 |
40 |
49 |
||||||
E |
F |
27 |
36 |
39 |
||||||
F |
End |
58 |
70 |
82 |
||||||
1. |
||
0. |
||
0.9. |
||
0.6. |
||
2.5. |
Answer: 0.6
Explanation:
Activity | Optimistic time-a | Expected completion time-m | Pessimistic time-b | Expected time= (a+4*m+ b)/6 | Variance, (sigma)^2= (b-a/6)^2 |
A | 44 | 50 | 56 | 50.00 | 4.00 |
B | 45 | 60 | 75 | 60.00 | 25.00 |
C | 42 | 45 | 48 | 45.00 | 1.00 |
D | 31 | 40 | 49 | 40.00 | 9.00 |
E | 27 | 36 | 39 | 35.00 | 4.00 |
F | 58 | 70 | 82 | 70.00 | 16.00 |
Paths
Paths | Duration | Variance |
ACEF | 200.00 | 25.00 |
ADF | 160.00 | |
BDF | 170.00 |
ACEF is the longest path (critical path) with a variance of 25 |
to find the probability for 201 days
step 1 | we will find the variance of the tasks which lie on critical path | 25.00 | |||
step 2 | mean project time (u) of critical path is= | 200 | |||
step 3 | Required completion time is | 201 days | |||
step 4 | standard deviation= sqrt(variance)= | 5.000 | |||
step 5 | because Z= (given completion time- u)/standard deviation | 0.200 | |||
step 6 | P(z)= using NORM.S.DIST(z,true) | 0.5793 ~0.6 |