Question

In: Mechanical Engineering

A hot liquid is filled in a spherical tank with an inner diameter of 3 m...

A hot liquid is filled in a spherical tank with an inner diameter of 3 m and a wall thickness of 3 cm. The tank wall is made of a material with a thermal conductivity of 0.15 W/m∙K. The hot liquid in the tank causes the inner surface temperature to be 100°C, while the tank outer surface is exposed to air at 20°C and has an emissivity of 0.35. Determine the outer surface temperature of the tank. Assume that the properties of air can be evaluated at 40°C and 1 atm pressure. Is this a good assumption?

Solutions

Expert Solution

Solution:

If you found this solution useful then please upvote


Related Solutions

A spherical balloon 6m diameter is filled with gas weighing 5.50N/m^3, what is the maximum load,...
A spherical balloon 6m diameter is filled with gas weighing 5.50N/m^3, what is the maximum load, including its own weight that the balloon can lift?
A conical tank of diameter 6 m and height 10 m is filled with water. Compute...
A conical tank of diameter 6 m and height 10 m is filled with water. Compute for the work needed to pump all the water 2 m above the tank. The water has a density of 1000 kg per cubic meter.
A cylindrical tank with inner diameter 2.0 m is designed to operate as a fluidized bed...
A cylindrical tank with inner diameter 2.0 m is designed to operate as a fluidized bed reactor for a heterogeneous catalytic reaction. The tank is loaded with a random packing of cubic particles to a height of 4.0 m with voidage 0.4 before the fluidization process. The density and length of each side of the cubic particles are 2600 kg m-3 and 1.0 cm respectively. During operation, a liquid reactant with density 1000 kg m-3 and viscosity 1.0 x 10-3...
The 1.3-m-diameter tank is initially filled with gasoline. There is a 3.2-cm-diameter orifice in the bottom....
The 1.3-m-diameter tank is initially filled with gasoline. There is a 3.2-cm-diameter orifice in the bottom. If the orifice is suddenly opened, estimate the time (minutes) for the fluid level to drop from 2m to 1.2 m. Use SG (gas) = 0.66, Cd = 0.63
A spherical storage tank contains oil. The tank has a diameter of 6 feet. You are...
A spherical storage tank contains oil. The tank has a diameter of 6 feet. You are asked to calculate the height at which an 8-foot-long dipstick would be wet with oil when immersed in the tank when it contains 6 ft3 of oil. The equation giving the height h of the liquid in the spherical tank for the given volume and radius is given by: f(h) = h3−9h2 + 3.8197 Use the secant method to find roots of equations to...
A large tank containing a mystery liquid is filled to a depth of L = 35...
A large tank containing a mystery liquid is filled to a depth of L = 35 m. The upper surface of the liquid is exposed to the atmosphere (of density 1.2 kg/m3). A pipe of cross-sectional area Ain = 0.01 m2 is inserted in to the liquid. The other ’outlet’ end of the pipe, of smaller cross sectional area Aout = 0.005 m2, is placed outside the liquid at a height of h = 2 m below the surface of...
A large tank containing a mystery liquid is filled to a depth of L = 35...
A large tank containing a mystery liquid is filled to a depth of L = 35 m. The upper surface of the liquid is exposed to the atmosphere (of density 1.2 kg/m3). A pipe of cross-sectional area Ain = 0.01 m2 is inserted in to the liquid. The other ’outlet’ end of the pipe, of smaller cross sectional area Aout = 0.005 m2, is placed outside the liquid at a height of h = 2 m below the surface of...
Spherical particle of silica of 0.1mm diameter falls in water filled in a glass cylinder of...
Spherical particle of silica of 0.1mm diameter falls in water filled in a glass cylinder of 40 mm internal diameter. Estimate the terminal settling velocity of single particle of silica. Also calculate the terminal settling velocity of silica particles when mass ratio of water to silica is 5. .
Q. Spherical glass particles (12 mm diameter and 2500 kg/m 3 density) and spherical metal particles...
Q. Spherical glass particles (12 mm diameter and 2500 kg/m 3 density) and spherical metal particles (1.5 mm diameter and 7500 kg/m3) are falling in water (density= 1000 kg/m3) . (1) Calculate the terminal falling velocities of glass and metal particles in water for a constant friction factor of 0.22. (2) At what water velocity will fluidized beds of glass particles and metal particles have the same bed densities? The relation between fluidization velocity (uc), terminal velocity (ut) and bed...
Consider a well-mixed tank filled with 200 L of liquid containing a chemical A at the...
Consider a well-mixed tank filled with 200 L of liquid containing a chemical A at the concentration of 4 mol/L which decomposes following a first order kinetics RA=k.CA with a rate constant of k=0.05 min-1 . At t=0 an outlet stream starts to leave the tank with the flow rate of 5 L/min. After the liquid level falls to the half of the initial level, an inlet stream with CA=4 mol/L starts entering the tank at a flow rate of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT