Question

In: Chemistry

Calculate the change in free energy of NADH oxidation by molecular oxygen

Calculate the change in free energy of NADH oxidation by molecular oxygen

Solutions

Expert Solution

Ans. Step 1:

Reduction-half reaction:

            0.5 O2 + 2 H+ + 2e -----------> H2O          ; E0 = + 0.82 V

Oxidation-half reaction:

            NADH ----------------> NAD+ + H+ + 2e             ; E0 = + 0.320V

# Step 2: Net Reaction for reduction of NO3-     -

            0.5 O2 + 2 H+ + 2e -----------> H2O                                  ; E0 = + 0.82 V

     (+) NADH ------------------------> NAD+ + H+ + 2e            ; E0 = + 0.320V

            -------------------------------------------------------------------------------

            0.5 O2 + NADH --------------> H2O + NAD+                ; E0net = ?

Net E0 for overall reaction = (E0, Reduction-half) – (E0, Oxidation-half)

            Or, E0net = 0.82 V – 0.320 V = 0.50 V

#Step 3: Now, dG0 for oxidation of NADH by O2 is given by-

                        dG0 = - n F E0                ; [n = number of electrons transferred]

                      dG0 = - 2 x (96.48 kJ V-1 mol) x (+ 0.50 V)

Hence, dG0= - 96.48 kJ mol-1


Related Solutions

(a) Calculate the standard free-energy change (ΔG°) for the following oxidation-reduction reaction. Cu(s) + Br2(aq) →...
(a) Calculate the standard free-energy change (ΔG°) for the following oxidation-reduction reaction. Cu(s) + Br2(aq) → Cu2+(aq) + 2 Br−(aq) (b) Calculate the equilibrium constant for this reaction at 298 K.
Calculate ?Go for the oxidation of NADH by FAD. Why is this reaction significant? Where used...
Calculate ?Go for the oxidation of NADH by FAD. Why is this reaction significant? Where used in metabolic processes? Eo’ = -0.219 V for FAD (electron acceptor) and –0.315 V for NADH (electron donor)
Summarize why the difference between free energy change and standard free energy change depends on the...
Summarize why the difference between free energy change and standard free energy change depends on the concentrations of the reactants and products in biochemistry.
4. Calculate the standard reduction potential and the standard free energy change for each of the...
4. Calculate the standard reduction potential and the standard free energy change for each of the following oxidation-reduction reactions: a. Ubiquinol (QH2) + 2 Cytochrome C(Fe +3) <--------> Ubiquinone (Q) + 2 Cytochrome C(Fe+2) + 2H+ b. Succinate + ½ O2 <--------> Fumarate + H2O c. Explain how odd chain fatty acids can serve as gluconeogenic precursors.
Using the given data, calculate the change in Gibbs free energy for each of the following...
Using the given data, calculate the change in Gibbs free energy for each of the following reactions. In each case indicate whether the reaction is spontaneous at 298 K under standard conditions. Part A: 2Ag (s) + Cl2 (g) --> 2AgCl (s) Gibbs free energy for AgCl (s) is -109.70 kJ/mol Part B: spontaneous or nonspontaneous Part C: P4O10 (s) + 16H2 (g) --> 4PH3 (g) + 10H2O (g) Gibbs free energy for P4O10 (s) is -2675.2 kJ/mol Gibbs free...
Calculate the standard change in Gibbs free energy, ΔGrxn∘, for the given reaction at 25.0 ∘C....
Calculate the standard change in Gibbs free energy, ΔGrxn∘, for the given reaction at 25.0 ∘C. Consult the table of thermodynamic properties for standard Gibbs free energy of formation values. KBr(s)↽−−⇀K+(aq)+Br−(aq) ΔGrxn°=    ?    kJ/mol Determine the concentration of K+(aq) if the change in Gibbs free energy, nΔGrxn, for the reaction is −8.95 kJ/mol. [K+] =    ? M
Calculate the free-energy change of the following reaction at 352°C and standard pressure. Values in the...
Calculate the free-energy change of the following reaction at 352°C and standard pressure. Values in the table are at standard pressure and 25°C. C2H4 + 3O2 --> 2CO2 +2H2O ΔHºf,(kJ/mol) Sºf, J/mol•K ΔGºf, kJ/mol C2H4(g) 52.3 219.5 68.1 O2(g) 0 205.0 0 CO2(g) -393.5 213.6 -394.4 H2O(g) -241.8 188.7 -228.6
1. Calculate the free energy change of the following processes at 298 K from the given...
1. Calculate the free energy change of the following processes at 298 K from the given information. At what temperature range would each of these be spontaneous?: a) ∆H˚ = 293 kJ; ∆S˚ = -695 J/K b) ∆H˚ = -1137 kJ; ∆S˚ = 0.496 kJ/K c) ∆H˚ = -86.6 kJ; ∆S˚ = -382 J/K 2-. Given the following chemical reactions, determine the heat of hydrogenation for C3H4(g) + 2 H2(g)  C3H8(g), and write the balanced thermochemical equation corresponding to...
Calculate the free energy released when FADH2 is oxidized by molecular O2 under standard conditions. Please...
Calculate the free energy released when FADH2 is oxidized by molecular O2 under standard conditions. Please show work
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn,...
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn, and T. (Assume that all reactants and products are in their standard states.) Part A ΔH∘rxn=−84kJ, ΔS∘rxn=−157J/K, T=302K Express your answer as an integer. Part B ΔH∘rxn=−84kJ, ΔS∘rxn=−157J/K, T=860K Express your answer as an integer. Part C ΔH∘rxn=84kJ, ΔS∘rxn=−157J/K, T=302K Express your answer as an integer. Part D ΔH∘rxn=−84kJ, ΔS∘rxn=157J/K, T=398K Express your answer as an integer.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT