In: Chemistry
Calculate the free-energy change of the following reaction at 352°C and standard pressure. Values in the table are at standard pressure and 25°C.
C2H4 + 3O2 --> 2CO2 +2H2O
ΔHºf,(kJ/mol) | Sºf, J/mol•K | ΔGºf, kJ/mol | |
---|---|---|---|
C2H4(g) | 52.3 | 219.5 | 68.1 |
O2(g) | 0 | 205.0 | 0 |
CO2(g) | -393.5 | 213.6 | -394.4 |
H2O(g) | -241.8 | 188.7 | -228.6 |
Sol :-
Given chemical reaction is :
C2H4 + 3O2 ---------------> 2CO2 + 2H2O
As,ΔH0rxn = [Sum of enthalpy of formation of products] - [Sum of enthalpy of formation of reactants]
= [2 x ΔH0f of CO2 + 2 x ΔH0f of H2O] - [ΔH0f of C2H4 + 3 x ΔH0f of O2]
= [2 x (-393.5 KJ/mol + 2 x (-241.8 KJ/mol)] - [52.3 KJ/mol + 3 x 0.0 KJ/mol]
= [- 787 KJ/mol - 483.6 KJ/mol] - 52.3 KJ/mol
= - 1270.6 KJ/mol - 52.3 KJ/mol
= - 1322.9 KJ/mol
Similarly,
As,ΔS0rxn = [Sum of entropy of formation of products] - [Sum of entropy of formation of reactants]
= [2 x S0f of CO2 + 2 x S0f of H2O] - [S0f of C2H4 + 3 x S0f of O2]
= [2 x 213.6 J/mol.K + 2 x 188.7 J/mol.K] - [219.5 J/mol.K + 3 x 205 J/mol.K]
= [427.2 J/mol.K + 377.4 J/mol.K] - [219.5 J/mol.K + 615 J/mol.K]
= 804.6 J/mol.K - 834.5 J/mol.K
= - 29.9 J/mol.K
Relationship between ΔG0, ΔH0 and ΔS0 is :
ΔG0 = ΔH0 - TΔS0
ΔG0 = - 1322.9 KJ/mol - (273 + 352) K x (- 29.9 x 10-3 KJ/mol.K)
ΔG0 = - 1322.9 KJ/mol + 18.6875 KJ/mol
ΔG0 = - 1304.2125 KJ/mol
Hence, ΔG0 at 3520C = - 1304.2125 KJ/mol