Question

In: Chemistry

Summarize why the difference between free energy change and standard free energy change depends on the...

Summarize why the difference between free energy change and standard free energy change depends on the concentrations of the reactants and products in biochemistry.

Solutions

Expert Solution

The Actual Free-Energy Change Depends on the Reactant and Product Concentrations. We must be careful to distinguish between two different quantities, the free-energy change, ΔG, and the standard free-energy change, ΔG°'. Each chemical reaction has a characteristic standard free-energy change, which may be positive, negative, or zero, depending on the equilibrium constant of the reaction. The standard free-energy change tells us in which direction and how far a given reaction will go to reach equilibrium when the initial concentration of each component is given.

ΔG° = -RT ln Keq and   ΔG = ΔG° + RT ln Keq where K is equilibrium constant and ΔG = Actual Free-Energy   ΔG° = standard free-energy change .

ΔG - ΔG° = RT ln Keq

A + B C + D

Keq = [C][D]/[A][B]

so the difference between free energy change and standard free energy change depends on Keq . and  Keq depends upon concentrations of reactions .

example in biochemistry

(1) Glucose + Pi glucose-6-phosphate + H2O

Keq = [glucose-6-phosphate] / [glucose][Pi]


Related Solutions

4. Calculate the standard reduction potential and the standard free energy change for each of the...
4. Calculate the standard reduction potential and the standard free energy change for each of the following oxidation-reduction reactions: a. Ubiquinol (QH2) + 2 Cytochrome C(Fe +3) <--------> Ubiquinone (Q) + 2 Cytochrome C(Fe+2) + 2H+ b. Succinate + ½ O2 <--------> Fumarate + H2O c. Explain how odd chain fatty acids can serve as gluconeogenic precursors.
What is the standard free energy change for the reaction below? Is the reaction expected to...
What is the standard free energy change for the reaction below? Is the reaction expected to be spontaneous under standard conditions? FeS(s) + O2(g) → Fe(s) + SO2(g)
Refer Appendix G in the text in order to determine the standard free energy change for...
Refer Appendix G in the text in order to determine the standard free energy change for each of these reactions. Determine whether or not the reaction is spontaneous under standard conditions (298 K, 1 atm). 2??3 → ?2 + 3?2 ???4 (?) + ?2 (?) → ???2 (?) + 2?2?(?) ?(???????) → ?(????ℎ???)
The standard free energy change of phosphate hydrolysis is shown below for several molecules in the...
The standard free energy change of phosphate hydrolysis is shown below for several molecules in the glycolytic pathway. Molecule ?G? (kJ/mol) Phosphoenolpyruvate ?61.9 1,3-Bisphosphoglycerate ?49.4 ATP ? ADP + Pi ?30.5 Fructose-6-phosphate ?15.9 Glucose-6-phosphate ?13.8 Which statement explains why glucose phosphorylation could not occur without ATP investment? A.   Without ATP investment in stage I of glycolysis, the concentration of ATP would become too high and would inhibit phosphofructokinase, leading to inhibition of the entire glycolytic pathway. B.   Without ATP investment,...
Use standard enthalpy and entropy data from Appendix G to calculate the standard free energy change...
Use standard enthalpy and entropy data from Appendix G to calculate the standard free energy change for the reaction shown here (298 K). What does the computed value for ΔG° say about the spontaneity of this process? C2 H6(g) ⟶ H2(g) + C2 H4(g)
A reaction A + B <==> C has a standard free-energy change of -3.27 kJ/mol at...
A reaction A + B <==> C has a standard free-energy change of -3.27 kJ/mol at 25oC What are the concentrations of A, B, and C at equilibrium if at the beginning of the reaction their concentrations are 0.30M, 0.40M and 0M respectively?
Calculate the standard change in Gibbs free energy, ΔGrxn∘, for the given reaction at 25.0 ∘C....
Calculate the standard change in Gibbs free energy, ΔGrxn∘, for the given reaction at 25.0 ∘C. Consult the table of thermodynamic properties for standard Gibbs free energy of formation values. KBr(s)↽−−⇀K+(aq)+Br−(aq) ΔGrxn°=    ?    kJ/mol Determine the concentration of K+(aq) if the change in Gibbs free energy, nΔGrxn, for the reaction is −8.95 kJ/mol. [K+] =    ? M
Calculate the free-energy change of the following reaction at 352°C and standard pressure. Values in the...
Calculate the free-energy change of the following reaction at 352°C and standard pressure. Values in the table are at standard pressure and 25°C. C2H4 + 3O2 --> 2CO2 +2H2O ΔHºf,(kJ/mol) Sºf, J/mol•K ΔGºf, kJ/mol C2H4(g) 52.3 219.5 68.1 O2(g) 0 205.0 0 CO2(g) -393.5 213.6 -394.4 H2O(g) -241.8 188.7 -228.6
the standard free energy change for the decomposition of two moles of hydrogen peroxide at 25​o​...
the standard free energy change for the decomposition of two moles of hydrogen peroxide at 25​o​ C is -224 kJ. 2H​2O​2(l) -> 2 H​2O(l) + O​2 (g)           delta G​o = -224kJ a.      Calculate the equilibrium constant for the reaction b.      What is the chemical significance of the value of the equilibrium constant? c.       The standard enthalpy change, delta H​o , for decomposition of hydrogen peroxide is + 196.1 kJ. Determine the standard entropy change, delta S​​o, for the reaction at...
A reaction: A (aq) + B (aq) <-----> C (aq) has a standard free energy change...
A reaction: A (aq) + B (aq) <-----> C (aq) has a standard free energy change of -3.05 kJ/mol at 25 C. What are the concentrations of A, B, and C at equilibrium if, at the beginning of the reaction, their concentrations are 0.30 M, 0.40 M, and 0 M, respectively? A = ? M B= ? M C= ? M How would your answer above change if the reaction had a standard free energy change of +3.05 kJ/mol? A.)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT