In: Statistics and Probability
Airfare = a + b1* (# of Airlines) + b2* Distance
+ b3* Traffic_O + b4* Traffic_D
+ b5* DumHO + b6* DumHD
+ b6* DumSW + ε
Origin | Destination | Average Fare | # of Airlines | Distance | Traffic_O | Traffic_D | Holiday_O | Holiday_D | South_West |
DFW | MFE | 268 | 1 | 468 | 16.98 | 12.50 | Yes | No | No |
HOU | HRL | 117 | 1 | 276 | 15.10 | 12.89 | No | No | Yes |
BNA | PHL | 247 | 2 | 675 | 15.18 | 16.19 | No | No | Yes |
DFW | PHL | 281 | 3 | 1302 | 16.98 | 16.19 | Yes | No | No |
MCO | PHL | 158 | 3 | 861 | 16.38 | 16.19 | Yes | No | Yes |
MHT | PHL | 151 | 3 | 290 | 14.41 | 16.19 | No | No | Yes |
PBI | PHL | 148 | 3 | 951 | 14.89 | 16.19 | Yes | No | No |
PHX | PHL | 224 | 4 | 2075 | 16.65 | 16.19 | Yes | No | Yes |
PIT | PHL | 133 | 3 | 267 | 15.57 | 16.19 | No | No | Yes |
o/p\ from excel for regression analysis
SUMMARY OUTPUT | |
Regression Statistics | |
Multiple R | 0.971852 |
R Square | 0.944496 |
Adjusted R Square | 0.555965 |
Standard Error | 41.89654 |
Observations | 9 |
ANOVA | |||||
df | SS | MS | F | Significance F | |
Regression | 7 | 29869.57 | 4267.081 | 2.430941 | 0.458299 |
Residual | 1 | 1755.32 | 1755.32 | ||
Total | 8 | 31624.89 |
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -867.018 | 495.238 | -1.751 | 0.330 | -7159.609 | 5425.573 | -7159.609 | 5425.573 |
# of Airlines | -57.701 | 41.355 | -1.395 | 0.396 | -583.161 | 467.760 | -583.161 | 467.760 |
Distance | 0.074 | 0.046 | 1.606 | 0.355 | -0.514 | 0.663 | -0.514 | 0.663 |
Traffic_O | 48.375 | 24.084 | 2.009 | 0.294 | -257.645 | 354.395 | -257.645 | 354.395 |
Traffic_D | 30.350 | 22.945 | 1.323 | 0.412 | -261.197 | 321.896 | -261.197 | 321.896 |
Holiday_O | -75.249 | 66.317 | -1.135 | 0.460 | -917.892 | 767.394 | -917.892 | 767.394 |
Holiday_D | 0 | 0 | 65535 | 0 | 0 | 0 | 0 | 0 |
South_West | -64.3027 | 47.08193 | -1.36576 | 0 | -662.535 | 533.9299 | -662.535 | 533.9299 |
airfare = -867.012 + (-57.7008)airlines + 0.074distance + 48.375traffic_o + 30.350traffic_D + (-75.249)holiday_o + (0)holiday_D + (-64.3027)south_west
a)
one more airline will decrease the average airfare by $(57.7008)
b)
Presence of South West in the market will (decrease/ average fare by $( 64.3027)
c)
One mile longer in distance will (increase) average fare by $( 0.074 )
d)
the intercept for holiday market is 0 , so no effect on airfare by market holiday