Question

In: Mechanical Engineering

Nitrogen (N2) goes through a constant area pipe (see figure below) at a mass rate of...

Nitrogen (N2) goes through a constant area pipe (see figure below) at a mass rate of 2 kg/s. It enters the pipe with a velocity of 17 m/s, a pressure of 500 kPa and a temperature of 177 C. It leaves the pipe at the same pressure (500 kPa) and a temperature of 67 C. The molar mass of N2 is 28 kg/kmol. Determine: a) The cross sectional area of the pipe in m2 . b) The velocity at the exit side in m/s. c) The rate of heat transfer in kW between the pipe and the surroundings. Also, indicate its direction.

Solutions

Expert Solution

please find the solution of above question

rate me high


Related Solutions

Nitrogen (N2) goes through a constant area pipe (see figure below) at a mass rate of...
Nitrogen (N2) goes through a constant area pipe (see figure below) at a mass rate of 2 kg/s. It enters the pipe with a velocity of 17 m/s, a pressure of 500 kPa and a temperature of 177 C. It leaves the pipe at the same pressure (500 kPa) and a temperature of 67 C. The molar mass of N2 is 28 kg/kmol. Determine: a) The cross sectional area of the pipe in m2 . b) The velocity at the...
Water flows through the pipe in the figure below and exits to the atmosphere at the...
Water flows through the pipe in the figure below and exits to the atmosphere at the right end of section C. The diameter of the pipe is 2.12 cm at A, 4.24 cm at B, and 0.880 cm at C. The gauge pressure in the pipe at the center of section A is 1.25 atm and the flow rate is 0.856 L/s. The vertical pipes are open to the air. Find the level (above the flow midline as shown) of...
Nitrogen (N2), at 300 K, 1 bar with a mass flow rate of 1 kg/s enters...
Nitrogen (N2), at 300 K, 1 bar with a mass flow rate of 1 kg/s enters an insulated mixing chamber and mixes with carbon dioxide (CO2) entering as a separate stream at 500 K, 1 bar with a mass flow rate of 0.5 kg/s. The mixture exits at 1 bar. Assuming ideal gas behavior, for steady-state operation, determine (a) the molar analysis (i.e., the molar flow rate for each gas) of the exiting mixture, (b) the exit mixture temperature, and...
A gaseous mixture of O2 and N2 contains 40.8 % nitrogen by mass. What is the...
A gaseous mixture of O2 and N2 contains 40.8 % nitrogen by mass. What is the partial pressure of oxygen in the mixture if the total pressure is 385 mmHg ? Express you answer numerically in millimeters of mercury.
Mounted on a low-mass rod of length 0.20 m are four balls (see figure below)
Mounted on a low-mass rod of length 0.20 m are four balls (see figure below). Two balls (shown in red on the diagram), each of mass 0.84 kg, are mounted at opposite ends of the rod. Two other balls, each of mass 0.31 kg (shown in blue on the diagram), are each mounted a distance 0.05 m from the center of the rod. The rod rotates on an axle through the center of the rod (indicated by the "X" in...
Water travels through a pipe at 5.13 m/s. The pipe expands from a crossectional area of...
Water travels through a pipe at 5.13 m/s. The pipe expands from a crossectional area of 2.9 m2 to an area of 11.6 m2. What is the speed of the water in the second part of the pipe in m/s? How much is the pressure change in KPa as the pipe expands? The density of water is 1000 kg/m3. Enter a positive value for an increase in pressure, a negative value for a decrease. (Kpa)
A fluid travels through a pipe of cross-sectional area A1 then moves through a connection into...
A fluid travels through a pipe of cross-sectional area A1 then moves through a connection into another pipe of cross-sectional area A2. If A1 is larger than A2, the velocity of the fluid will ______. Group of answer choices A. increase B. decrease C. remain constant D. evaporate
A gas mixture containing 60% N2 and the balance n-hexane flows through a pipe at a...
A gas mixture containing 60% N2 and the balance n-hexane flows through a pipe at a rate of 200m3/hr. The pressure is 2atm absolute and the temperature is 100 C. a) What is the molar flow rate of the gas in kmol/hr? b) Is the gas saturated? Show calculations (hint: use vapor pressure of hexane at 100 C) c) If 80% of n-hexane is condensed (and leaves as a liquid), how much of vapor is leaving and what is its...
A branching pipe connects two storage tanks as shown in Figure Q3 below. Figure Q3 (a)...
A branching pipe connects two storage tanks as shown in Figure Q3 below. Figure Q3 (a) Write down the continuity equation as it applies to flows in the pipes 1, 2 and 3. [1 mark] (b) Write down the energy equation in terms of energy heads at A and at B and quantities relating to flow in the pipes in between. [2 marks] (c) What can be said about the energy loss in pipe 2 relative to that in pipe...
A gas mixture containing 80.0 mole% N2 and the balance n-hexane flows through a pipe at...
A gas mixture containing 80.0 mole% N2 and the balance n-hexane flows through a pipe at a rate of 100.0 m3/h. The pressure is 2.00 atm absolute and the temperature is 140.0°C. a. What is the molar flow rate of the gas?   b. To what temperature would the gas have to be cooled at constant pressure in order to begin condensing hexane? c. To what temperature would the gas have to be cooled at constant pressure in order to condense...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT