Question

In: Chemistry

For a parallel reaction A goes to B with rate constant k1 and A goes to...

For a parallel reaction A goes to B with rate constant k1 and A goes to C with rate constant k2, you determine that the activation energies are 24.6 kJ/mol for k1 and 116.4 kJ/mol for k2. If the rate constants are equal at a temperature of 318 K, at what temperature (in K) will k1/k2 = 2?

Solutions

Expert Solution

Arrhenius' equation gives the dependence of the rate constant of a chemical reaction on the absolute temperature (in kelvin), where is the pre-exponential factor (or simply the prefactor), is the activation energy, and is the universal gas constant (

For the reaction 1: , the rate constant is given by the following equation:

For the reaction 2: , the rate constant is given by the following equation:

At T=318 K:   

If

with


Related Solutions

Consider the following reaction: S↔P where the rate constant for the forward reaction is k1, and...
Consider the following reaction: S↔P where the rate constant for the forward reaction is k1, and the rate constant for the reverse reaction is k2, and Keq= [P]/[S] Which of the following would be affected by an enzyme? Please answer yes or no and give a short explanation (5-20 words maximally) a) decreased Keq b) increased k1 c) increased Keq d) increased Δ G# e) decreased Δ G# f) increased k2 g) more negative Δ G0
The reaction 2A →B is second order in A with a rate constant of 35.1 M−1...
The reaction 2A →B is second order in A with a rate constant of 35.1 M−1 · s−1 at 25°C. (a) Starting with [A]0 = 0.00781 M, how long will it take for the concentration of A to drop to 0.00180 M? s (b) Calculate the half-life of the reaction for [A]0 = 0.00781 M. s (c) Calculate the half-life of the reaction for [A]0 = 0.00269 M.   s 2. Given the same reactant concentrations, the reaction CO(g) + Cl2(g)...
Elementary , irreversible and isothermal gas phase reaction A+B--------- C. Reaction rate constant is 20M-1min-1 at...
Elementary , irreversible and isothermal gas phase reaction A+B--------- C. Reaction rate constant is 20M-1min-1 at temeperature 80 degree celcius . Feed flow rate (10L/min) to the plug flow reactor , which volume is 80 litres, contains 2%A and 2%B and inert gas temperature of 80 degree celcius and pressure 6 bar . Calculate the conversion of A.
1. The rate constant for the reaction 2A → B is 7.25 × 10−3 s−1 at...
1. The rate constant for the reaction 2A → B is 7.25 × 10−3 s−1 at 110 ° C. The reaction is first order in A. How long (in seconds) will it take for [A] to decrease from 1.81 M to 0.750 M? 2. The following reaction, 2A → B is first order in A and has a rate constant, k, of 7.5 × 10−3 s−1 at 110 ° C. With a starting concentration of [A] = 1.65 M, what...
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [A]...
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [A] (M) [B] (M) Rate (M/s) 1 0.280 0.240 0.0160 2 0.280 0.576 0.0922 3 0.504 0.240 0.0288 k= Units
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [?]...
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [?] (?) [?] (?) Rate (M/s) 1    0.350 0.300 0.0161 2 0.350 0.750 0.101 3 0.490 0.300 0.0225 k= _________? Mention the unit as well
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [?]...
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [?] (?) [?] (?) Rate (M/s) 1 0.360 0.320 0.0152 2 0.360 0.704 0.0736 3 0.504 0.320 0.0213
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [A]...
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [A] (M) [B] (M) Rate (M/s) 1 0.350 0.360 0.0230 2 0.350 1.01 0.180 3 0.490 0.360 0.0322 k= Units
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [?]...
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [?] (?)[A] (M) [?] (?)[B] (M) Rate (M/s) 1 0.2900.290 0.3300.330 0.01540.0154 2 0.2900.290 0.7590.759 0.08150.0815 3 0.4930.493 0.3300.330 0.02620.0262 ?=k= Units
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [?]...
Using the data in the table, calculate the rate constant of this reaction. A+B⟶C+D Trial [?] (?)[A] (M) [?] (?)[B] (M) Rate (M/s) 1 .300 .290 .0163 2 .300 .754 .110 3 .360 .290 .0196
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT