Question

In: Physics

Water flows through the pipe in the figure below and exits to the atmosphere at the...

Water flows through the pipe in the figure below and exits to the atmosphere at the right end of section C. The diameter of the pipe is 2.12 cm at A, 4.24 cm at B, and 0.880 cm at C. The gauge pressure in the pipe at the center of section A is 1.25 atm and the flow rate is 0.856 L/s. The vertical pipes are open to the air. Find the level (above the flow midline as shown) of the liquid-air interfaces in the two vertical pipes. Assume laminar nonviscous flow.
hA = m

hB = m

Solutions

Expert Solution

answered this same question before so please just change the values and you are good to go.


Related Solutions

Water flows through a cast iron pipe with a diameter of 30 mm. The pipe is...
Water flows through a cast iron pipe with a diameter of 30 mm. The pipe is inclined at an angle of 3 degrees from horizontal and is 40 m long. The water flows due to gravity only. What is the maximum volume flow rate of the water? You may ignore any minor loses.
Water is flowing in the pipe shown in the figure below, with the 7.70-cm diameter at...
Water is flowing in the pipe shown in the figure below, with the 7.70-cm diameter at point 1 tapering to 3.45 cm at point 2, located y = 11.5 cm below point 1. The water pressure at point 1 is 3.20 ✕ 104 Pa and decreases by 50% at point 2. Assume steady, ideal flow. What is the speed of the water at the following points? Point 1? Point 2?
Water flows upward and then is discharged to the right through a 3 inch diameter pipe...
Water flows upward and then is discharged to the right through a 3 inch diameter pipe elbow, at a steady flow rate of 1 cubic foot per second, the gage pressure at the entrance to the elbow is 30 psi. What vertical and horizontal force is necessary to hold the elbow stationary, neglecting any required torque.
Water flows through a circular pipe with a constant radius of 5.0 cm. The speed and...
Water flows through a circular pipe with a constant radius of 5.0 cm. The speed and pressure at point A is 2.0 m/s and 2.0 x10^5 Pa respectively. What is the pressure at point B, which is 1.0 m higher than at point A.
a) Water (Densitywater = 1,000 kg/m3) flows through a pipe that narrows. At point A it...
a) Water (Densitywater = 1,000 kg/m3) flows through a pipe that narrows. At point A it is determined that the water flows with a velocity of VA = 93 m/s. At point B it is determined that the water flows with a velocity of VB = 193 m/s.What is the nagnitude of the difference in pressure between points A and B. b) Two trains pass each other. Train A is traveling 36 m/s east. Train B is traveling 23 m/s...
A suspension of calcium carbonate particles in water flows through a pipe. An engineer was asked...
A suspension of calcium carbonate particles in water flows through a pipe. An engineer was asked to determine both the flow rate and the composition of this slurry. The engineer proceeded to collect the stream in a graduated cylinder for a time given in the table below. The engineer weighed the cylinder, evaporate the collected water, and reweighed the cylinder. The following results are obtained based on two occasion Item Sample 1 Sample 2 Time to collect 1 min 1...
A 8.0-cm-diameter horizontal pipe gradually narrows to 5.0 cm . When water flows through this pipe...
A 8.0-cm-diameter horizontal pipe gradually narrows to 5.0 cm . When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 31.0 kPa and 25.0 kPa , respectively. What is the volume rate of flow?
Question 1) Water at 20 C flows through a galvanized pipe at an average speed of...
Question 1) Water at 20 C flows through a galvanized pipe at an average speed of 2.5 m / s. The diameter of the pipe is 150 mm. The roughness of the pipe surface is 60 μm. Calculate the pressure drop in this pipe since the total length of the pipe is 300 meters. Take the necessary values for calculations from tables and diagrams.
Water flows steadily through a splitter as shown in the figure with Q, = 0.08 m³...
Water flows steadily through a splitter as shown in the figure with Q, = 0.08 m³ / sec, Q, = 0.05 m3 / sec, D, = D2 = 12 cm, D3 = 10 cm. If the pressure readings at the inlet and outlets of the splitter are P, = 100 KPa, P2 = 90 KPa and P3 = 80 KPa, determine external force needed to hold the splitter. Disregard the weight effects.
A water is flowing through a circular varying diameter pipe. The water completely fills the pipe...
A water is flowing through a circular varying diameter pipe. The water completely fills the pipe at all its sections. 1- What is the water velocity of the water at the first section if you know that the diameter of the pipe at this section= 22 cm and the water is flowing at a rate of 2.5 m3/s? 2- What is the diameter of the pipe at the second section if you know that the water velocity at this section...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT