Question

In: Statistics and Probability

Do this problem without using any calculus/integration. Suppose that X and Y are jointly continuous random...

Do this problem without using any calculus/integration. Suppose that X and Y are jointly continuous random variables with joint density

fX,Y (x, y) = (1/y)exp (−y − (x /y) ), x > 0, y > 0

(a) Find the marginal density of Y and the conditional density of X given Y = y, y > 0

(b) Sketch a plot of the joint pdf

(c) Explain how could you simulate an (X, Y ) pair using an Exponential(1) spinner

(d) Find E(Y ) and Var(Y )

(e) Find E(X|Y ) and Var(X|Y )

(f) Find E(X)

(g) Find Var(X)

(h) Find Cov(X, Y )

Solutions

Expert Solution


Related Solutions

Let X and Y be two jointly continuous random variables with joint PDF f(x,y) = Mxy^2...
Let X and Y be two jointly continuous random variables with joint PDF f(x,y) = Mxy^2 0<x<y<1 a) Find M = ? b) Find the marginal probability densities. c) P( y> 1/2 | x = .25) = ? d) Corr (x,y) = ?
Problem 2. (a) Prove that, if two continuous random variable X and Y are independent P(X...
Problem 2. (a) Prove that, if two continuous random variable X and Y are independent P(X > x, Y > y) = P(X > x)P(Y > y) (b) Now prove that, under the same conditions, X,Y, independent continuous random variables, E(XY) = E(X)E(Y).
Let X and Y be jointly normal random variables with parameters E(X) = E(Y ) =...
Let X and Y be jointly normal random variables with parameters E(X) = E(Y ) = 0, Var(X) = Var(Y ) = 1, and Cor(X, Y ) = ρ. For some nonnegative constants a ≥ 0 and b ≥ 0 with a2 + b2 > 0 define W1 = aX + bY and W2 = bX + aY . (a)Show that Cor(W1, W2) ≥ ρ (b)Assume that ρ = 0.1. Are W1 and W2 independent or not? Why? (c)Assume now...
Consider the observations jointly taken on the binary random variables X and Y given in the...
Consider the observations jointly taken on the binary random variables X and Y given in the “Problem 1” worksheet in the Table. 1. Organize the data in a two-way table by counting the number of observations that fall within each of the following cells: {X = 0, Y = 0}, {X = 0, Y = 1}, {X = 1, Y = 0}, and {X = 1, Y = 1}. 2. Use observed cell counts found in part 1 to estimate...
Let X and Y be continuous random variables with E[X] = E[Y] = 4 and var(X)...
Let X and Y be continuous random variables with E[X] = E[Y] = 4 and var(X) = var(Y) = 10. A new random variable is defined as: W = X+2Y+2. a. Find E[W] and var[W] if X and Y are independent. b. Find E[W] and var[W] if E[XY] = 20. c. If we find that E[XY] = E[X]E[Y], what do we know about the relationship between the random variables X and Y?
Random variable X is a continuous uniform (0,4) random variable and Y=X^(1/2). (Note: Y is always...
Random variable X is a continuous uniform (0,4) random variable and Y=X^(1/2). (Note: Y is always the positive root.) What is the P[X>=E[X]] ? What is the E[Y] ? what is the P[Y>=E[Y]]? what is the PFD of fY(y)?
In this problem there are two random variables X and Y. The random variable Y counts...
In this problem there are two random variables X and Y. The random variable Y counts how many times we roll the die in the following experiment: First, we flip a fair coin. If it comes Heads we set X= 1 and roll a fair die until we get a six. If it comes Tails, we set X= 0 and roll the die until we get an even number (2, 4 or 6). a). What are the possible values taken...
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0...
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0 < x, 0 < y, x + y < 2 and 0 otherwise 1) Find  P[X ≥ 1|Y ≤ 1.5] 2) Find P[X ≥ 0.5|Y ≤ 1]
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1...
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1                            for 0 < x < 1, x < y < x + 1. What is the marginal density of X and Y? Use this to compute Var(X) and Var(Y) Compute the expectation E[XY] Use the previous results to compute the correlation Corr (Y, X) Compute the third moment of Y, i.e., E[Y3]
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1...
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1 for 0 < x < 1, x < y < x + 1. A. What is the marginal density of X and Y ? Use this to compute Var(X) and Var(Y). B. Compute the expectation E[XY] C. Use the previous results to compute the correlation Corr(Y, X). D. Compute the third moment of Y , i.e., E[Y3].
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT