In: Accounting
Fairwell company has recorded the following data related to two alternatives A and B.
Both require an investment of $56,125
Year ACFs after depre.Tax ACFs after depre. Tax
1 $3,375 11,375 2 5,373 9,375
3 7,375 7,375
4 9,375 5,375
5 11,375 3,37 36,875 36,875
Cost of capital 10%
Estimated life 5 years 5 years
Estimated salvage value $3,000 $3,000
Tax rate 55% 55%
Depreciation has been charged on straight line basis calculate:
A | B | |
COST | 56125 | 56125 |
Cash flow after deprciation and tax | ||
Yr1 | 3375 | 11375 |
Yr2 | 5375 | 9375 |
Yr3 | 7375 | 7375 |
Yr5 | 9375 | 5375 |
Yr5 | 11375 | 3375 |
Total | 36875 | 36875 |
life | 5year | 5year |
salvage value | 3000 | 3000 |
Annual cash flow after tax (alternative A)-
Yr | cashflow after depreciation and tax | depreciation(Non cash ) | cash flow after tax(CFAT) | Cumulative CFAT |
1 | 3375 |
=(56125-3000)/5 =10625 |
14000 | 14000 |
2 | 5375 | 10625 | 16000 | 30000 |
3 | 7375 | 10625 | 18000 | 48000 |
4 | 9375 | 10625 | 20000 | 68000 |
5 | 11375 | 10625 | 22000+3000 | 93000 |
Note-CFAT AT 5TH YEAR INCLUDES 3000 SALVAGE VALUE
Annual cash flow after tax (alternative-B)-
Yr | cashflow after depreciation and tax | depreciation(Non cash ) | cash flow after tax(CFAT) | Cumulative CFAT |
1 | 11375 |
=(56125-3000)/5 =10625 |
22000 | 22000 |
2 | 9375 | 10625 | 20000 | 42000 |
3 | 7375 | 10625 | 18000 | 60000 |
4 | 5375 | 10625 | 16000 | 76000 |
5 | 3375 | 10625 | 14000+3000 | 93000 |
Note-CFAT AT 5TH YEAR INCLUDES 3000 SALVAGE VALUE
----------------------------------------------
(1) ARR( Average rate of return)
ARR = (Average income/Average investment) × 100.
Average income of Machines A and B =(Rs 36,875/5) = Rs 7,375.
Average investment = Salvage value + 1/2 (Cost of machine –
Salvage
value) = Rs 3,000 + 1/2 (Rs 56,125 – Rs 3,000) = Rs 29,562.50.
ARR (for machines A and B) = (Rs 7,375/Rs 29,562.50) × 100 = 24.9%
-----------------------------------
(2) Pay back period
Pay back period = A + (B/C)
A is the last period number with a negative cumulative
cash flow;
B is the absolute value (i.e. value without negative sign)
of cumulative net cash flow at the end of the period A; and
C is the total cash inflow during the period following
period A
pay back period of Alternate A-
Period | Cash Flow | Cumulative |
---|---|---|
0 | -56125 | -56125 |
1 | 14000 | -42125 |
2 | 16000 | -26125 |
3(A) | 18000 | -8125(B) |
4 | 20000(C) | 11875 |
5 | 25000 | 36875 |
pay back period of A = 3 +(8125/20000) = 3.046 YEARS
pay back period of Alternate A-
Period | Cash Flow | Cumulative |
---|---|---|
0 | -56125 | -56125 |
1 | 22000 | -34125 |
2(A) | 20000 | -14125(B) |
3 | 18000(C) | 3875 |
4 | 16000 | 19875 |
5 | 17000 | 36875 |
pay back period of A = 2 +(14125/18000) = 2.785 YEARS
---------------------------------------------------
(3) NPV CALCULATION
Alternate-A | -56125 | Alternate-B | -56125 | |||
Yr | CFAT | PVF@10% | PV | CFAT | PVF@10% | PV |
1 | 14000 | 0.909 | 12726 | 22000 | 0.909 | 19998 |
2 | 16000 | 0.826 | 13216 | 20000 | 0.826 | 16250 |
3 | 18000 | 0.751 | 13518 | 18000 | 0.751 | 13518 |
4 | 20000 | 0.683 | 14660 | 16000 | 0.683 | 10928 |
5 | 25000 | 0.621 | 15525 | 17000 | 0.621 | 10557 |
NPV | 13520 | NPV | 15396 |
----------------------------------------------------
(4)IRR Calculation-
AT IRR PV OF CASH INFLOW = PV OF CASH OUTFLOW, MEANS NPV=0
Average Cash flow per year = 93000/5 = 18600
average IRR = 18600/9300*100 = 20%
Let take IRR for A = 18% & for B =21%
Alternate-A | -56125 | Alternate-B | -56125 | |||
Yr | CFAT | PVF@18% | PV | CFAT | PVF@21% | PV |
1 | 14000 | 0.847 | 11858 | 22000 | 0.826 | 18172 |
2 | 16000 | 0.718 | 11488 | 20000 | 0.683 | 13660 |
3 | 18000 | 0.609 | 10962 | 18000 | 0.564 | 10152 |
4 | 20000 | 0.516 | 10320 | 16000 | 0.467 | 7472 |
5 | 25000 | 0.437 | 10925 | 17000 | 0.386 | 6562 |
Total PV of cash inflow | 55553 | PV of cash inflow | 56108 | |||
Less- | Initial Investment | 56125 | initial investment | 56125 | ||
NPV | -572 | -107 |
Since NPV is negative discountb rate should be lowered
let takeIRR for A = 17% AND for B = 20%
Alternate-A | -56125 | Alternate-B | -56125 | |||
Yr | CFAT | PVF@17% | PV | CFAT | PVF@20% | PV |
1 | 14000 | 0.855 | 11970 | 22000 | 0.833 | 18326 |
2 | 16000 | 0.731 | 11696 | 20000 | 0.694 | 13880 |
3 | 18000 | 0.624 | 10232 | 18000 | 0.579 | 10442 |
4 | 20000 | 0.534 | 10680 | 16000 | 0.484 | 7712 |
5 | 25000 | 0.456 | 11400 | 17000 | 0.442 | 6834 |
Total PV of cash inflow | 56978 | PV of cash inflow | 57174 | |||
Less- | Initial Investment | 56125 | initial investment | 56125 | ||
NPV | 835 | 1049 |
APPLYING INTERPOLATION-
IRR of A = 17% + [(56978-56125)/(56978-55553)]*1 = 17.6%
IRR of B = 20% + [(57175-561250/(57174-56108)]*1 = 20.9%
-------------------------
(5) Profitability index
Profitability index = PV of cash inflow / PV of cash outflow
Alternate-A CASH Out flow |
56125 |
Alternate-B cash outflow |
-56125 | |||
Yr | CFAT | PVF@10% | PV | CFAT | PVF@10% | PV |
1 | 14000 | 0.909 | 12726 | 22000 | 0.909 | 19998 |
2 | 16000 | 0.826 | 13216 | 20000 | 0.826 | 16250 |
3 | 18000 | 0.751 | 13518 | 18000 | 0.751 | 13518 |
4 | 20000 | 0.683 | 14660 | 16000 | 0.683 | 10928 |
5 | 25000 | 0.621 | 15525 | 17000 | 0.621 | 10557 |
PV of cash inflow | 69645 | NPV | 71521 | |||
Profitability Index |
=69645/56125 =1.24 |
Profitability Index |
=71521/56125 =1.27 |