In: Accounting
Fairwell company has recorded the following data related to two alternatives A and B.
Both require an investment of $56,125
Year ACFs after depre.Tax ACFs after depre. Tax
1 $3,375 11,375 2 5,373 9,375
3 7,375 7,375
4 9,375 5,375
5 11,375 3,37 36,875 36,875
Cost of capital 10%
Estimated life 5 years 5 years
Estimated salvage value $3,000 $3,000
Tax rate 55% 55%
Depreciation has been charged on straight line basis calculate:
| A | B | |
| COST | 56125 | 56125 | 
| Cash flow after deprciation and tax | ||
| Yr1 | 3375 | 11375 | 
| Yr2 | 5375 | 9375 | 
| Yr3 | 7375 | 7375 | 
| Yr5 | 9375 | 5375 | 
| Yr5 | 11375 | 3375 | 
| Total | 36875 | 36875 | 
| life | 5year | 5year | 
| salvage value | 3000 | 3000 | 
Annual cash flow after tax (alternative A)-
| Yr | cashflow after depreciation and tax | depreciation(Non cash ) | cash flow after tax(CFAT) | Cumulative CFAT | 
| 1 | 3375 | 
 =(56125-3000)/5 =10625  | 
14000 | 14000 | 
| 2 | 5375 | 10625 | 16000 | 30000 | 
| 3 | 7375 | 10625 | 18000 | 48000 | 
| 4 | 9375 | 10625 | 20000 | 68000 | 
| 5 | 11375 | 10625 | 22000+3000 | 93000 | 
Note-CFAT AT 5TH YEAR INCLUDES 3000 SALVAGE VALUE
Annual cash flow after tax (alternative-B)-
| Yr | cashflow after depreciation and tax | depreciation(Non cash ) | cash flow after tax(CFAT) | Cumulative CFAT | 
| 1 | 11375 | 
 =(56125-3000)/5 =10625  | 
22000 | 22000 | 
| 2 | 9375 | 10625 | 20000 | 42000 | 
| 3 | 7375 | 10625 | 18000 | 60000 | 
| 4 | 5375 | 10625 | 16000 | 76000 | 
| 5 | 3375 | 10625 | 14000+3000 | 93000 | 
Note-CFAT AT 5TH YEAR INCLUDES 3000 SALVAGE VALUE
----------------------------------------------
(1) ARR( Average rate of return)
ARR = (Average income/Average investment) × 100.
Average income of Machines A and B =(Rs 36,875/5) = Rs 7,375.
Average investment = Salvage value + 1/2 (Cost of machine –
Salvage
value) = Rs 3,000 + 1/2 (Rs 56,125 – Rs 3,000) = Rs 29,562.50.
ARR (for machines A and B) = (Rs 7,375/Rs 29,562.50) × 100 = 24.9%
-----------------------------------
(2) Pay back period
Pay back period = A + (B/C)
A is the last period number with a negative cumulative
cash flow;
B is the absolute value (i.e. value without negative sign)
of cumulative net cash flow at the end of the period A; and
C is the total cash inflow during the period following
period A
pay back period of Alternate A-
| Period | Cash Flow | Cumulative | 
|---|---|---|
| 0 | -56125 | -56125 | 
| 1 | 14000 | -42125 | 
| 2 | 16000 | -26125 | 
| 3(A) | 18000 | -8125(B) | 
| 4 | 20000(C) | 11875 | 
| 5 | 25000 | 36875 | 
pay back period of A = 3 +(8125/20000) = 3.046 YEARS
pay back period of Alternate A-
| Period | Cash Flow | Cumulative | 
|---|---|---|
| 0 | -56125 | -56125 | 
| 1 | 22000 | -34125 | 
| 2(A) | 20000 | -14125(B) | 
| 3 | 18000(C) | 3875 | 
| 4 | 16000 | 19875 | 
| 5 | 17000 | 36875 | 
pay back period of A = 2 +(14125/18000) = 2.785 YEARS
---------------------------------------------------
(3) NPV CALCULATION
| Alternate-A | -56125 | Alternate-B | -56125 | |||
| Yr | CFAT | PVF@10% | PV | CFAT | PVF@10% | PV | 
| 1 | 14000 | 0.909 | 12726 | 22000 | 0.909 | 19998 | 
| 2 | 16000 | 0.826 | 13216 | 20000 | 0.826 | 16250 | 
| 3 | 18000 | 0.751 | 13518 | 18000 | 0.751 | 13518 | 
| 4 | 20000 | 0.683 | 14660 | 16000 | 0.683 | 10928 | 
| 5 | 25000 | 0.621 | 15525 | 17000 | 0.621 | 10557 | 
| NPV | 13520 | NPV | 15396 | 
----------------------------------------------------
(4)IRR Calculation-
AT IRR PV OF CASH INFLOW = PV OF CASH OUTFLOW, MEANS NPV=0
Average Cash flow per year = 93000/5 = 18600
average IRR = 18600/9300*100 = 20%
Let take IRR for A = 18% & for B =21%
| Alternate-A | -56125 | Alternate-B | -56125 | |||
| Yr | CFAT | PVF@18% | PV | CFAT | PVF@21% | PV | 
| 1 | 14000 | 0.847 | 11858 | 22000 | 0.826 | 18172 | 
| 2 | 16000 | 0.718 | 11488 | 20000 | 0.683 | 13660 | 
| 3 | 18000 | 0.609 | 10962 | 18000 | 0.564 | 10152 | 
| 4 | 20000 | 0.516 | 10320 | 16000 | 0.467 | 7472 | 
| 5 | 25000 | 0.437 | 10925 | 17000 | 0.386 | 6562 | 
| Total PV of cash inflow | 55553 | PV of cash inflow | 56108 | |||
| Less- | Initial Investment | 56125 | initial investment | 56125 | ||
| NPV | -572 | -107 | 
Since NPV is negative discountb rate should be lowered
let takeIRR for A = 17% AND for B = 20%
| Alternate-A | -56125 | Alternate-B | -56125 | |||
| Yr | CFAT | PVF@17% | PV | CFAT | PVF@20% | PV | 
| 1 | 14000 | 0.855 | 11970 | 22000 | 0.833 | 18326 | 
| 2 | 16000 | 0.731 | 11696 | 20000 | 0.694 | 13880 | 
| 3 | 18000 | 0.624 | 10232 | 18000 | 0.579 | 10442 | 
| 4 | 20000 | 0.534 | 10680 | 16000 | 0.484 | 7712 | 
| 5 | 25000 | 0.456 | 11400 | 17000 | 0.442 | 6834 | 
| Total PV of cash inflow | 56978 | PV of cash inflow | 57174 | |||
| Less- | Initial Investment | 56125 | initial investment | 56125 | ||
| NPV | 835 | 1049 | 
APPLYING INTERPOLATION-
IRR of A = 17% + [(56978-56125)/(56978-55553)]*1 = 17.6%
IRR of B = 20% + [(57175-561250/(57174-56108)]*1 = 20.9%
-------------------------
(5) Profitability index
Profitability index = PV of cash inflow / PV of cash outflow
| 
 Alternate-A CASH Out flow  | 
56125 | 
 Alternate-B cash outflow  | 
-56125 | |||
| Yr | CFAT | PVF@10% | PV | CFAT | PVF@10% | PV | 
| 1 | 14000 | 0.909 | 12726 | 22000 | 0.909 | 19998 | 
| 2 | 16000 | 0.826 | 13216 | 20000 | 0.826 | 16250 | 
| 3 | 18000 | 0.751 | 13518 | 18000 | 0.751 | 13518 | 
| 4 | 20000 | 0.683 | 14660 | 16000 | 0.683 | 10928 | 
| 5 | 25000 | 0.621 | 15525 | 17000 | 0.621 | 10557 | 
| PV of cash inflow | 69645 | NPV | 71521 | |||
| Profitability Index | 
 =69645/56125 =1.24  | 
Profitability Index | 
 =71521/56125 =1.27  |