Question

In: Other

Air is compressed adiabatically in a piston–cylinder assembly from 1 bar, 300 K to 8 bar,...

Air is compressed adiabatically in a piston–cylinder assembly from 1 bar, 300 K to 8 bar, 600 K. The air can be modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the amount of entropy produced, in kJ/K per kg of air, for the compression. What is the minimum theoretical work input, in kJ per kg of air, for an adiabatic compression from the given initial state to a final pressure of 8 bar? Note that work is positive into the compressor.

Solutions

Expert Solution

See we need to calculate the enropy change for irreversible adiabatic process

Delta S total =Delta S system + Delta S surrounding

since process is adiabtic so no heat transfer with surrounding or delta S surrounding = 0

now for delta S system (See, delta S is atate function and not dependent upon the path so we will calculate delts S for a reversible path for the same first and final state)

so lets consider the process goes isochoric (volume = constant) from 1 bar 300 K to 8 bar 600 K, W = 0 for this assumed process because deltaV = 0

so delta S system = deltaQ/T = delta U/T = nCVdT/T

By integrating we get Delta S system = nCvlnT2/T1

Cv for air = 0..718, n = 1/29,

delta S syst = 1/29*0.718ln2 = 0.017 kJ/K = delta S total

for adibatic process, PVy = constant or T2/T1 = (P2/P1)(y-1)/y

600/300 = (8/1)(y-1)y or y= 3/2

work done minimum for comprsssion = work done in reversible process = nR(T2-T1)/(1-y)

for 1 kg of air, n = 1000/29, R = 8.314,

so Wmin = 1000/29*8.314*(600-300)/(1-1.5) =-172.014 kJ/kg


Related Solutions

Air is compressed adiabatically in a piston–cylinder assembly from 1 bar, 300 K to 4 bar,...
Air is compressed adiabatically in a piston–cylinder assembly from 1 bar, 300 K to 4 bar, 600 K. The air can be modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the amount of entropy produced, in kJ/K per kg of air, for the compression. What is the minimum theoretical work input, in kJ per kg of air, for an adiabatic compression from the given initial state to a final pressure of 4 bar? Note...
Air of 0.5 kg mass is compressed in a piston-cylinder device from 300 K, 120 kPa...
Air of 0.5 kg mass is compressed in a piston-cylinder device from 300 K, 120 kPa to 500K, 940 kPa. (a) Determine the entropy change in kJ/K using (i) approximate analysis and (ii) exact analysis. (b) Determine the direction of heat transfer (into the device or out of the device).
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 7 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.4, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 3 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.2, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 =...
Air undergoes a polytropic process in a piston–cylinder assembly from p1 = 1 bar, T1 = 295 K to p2 = 3 bar. The air is modeled as an ideal gas and kinetic and potential energy effects are negligible. For a polytropic exponent of 1.6, determine the work and heat transfer, each in kJ per kg of air, (1) assuming constant cv evaluated at 300 K. (2) assuming variable specific heats.
One-quarter kilogram of air is compressed in a piston-cylinder device from 350 K and 150 kPa...
One-quarter kilogram of air is compressed in a piston-cylinder device from 350 K and 150 kPa to 550 K and 900 kPa. Determine a. The entropy change, in KJ/K. b. The direction of any heat transfer by using the entropy balance. c. What-if scenario: If this process occurs adiabatically, is this process reversible, irreversible, or impossible process? Please answer the nature of this process and why.
Consider a piston cylinder device with a volume of 0.04 m3 and initially contains air at 293 K and 1 bar.
  Consider a piston cylinder device with a volume of 0.04 m3 and initially contains air at 293 K and 1 bar. It is desired to reverse the cycle and use it as a refrigerator. In this case the process would begin with PV1.36 = constant process from an initial state of 293 K and a pressure of 10 Bars. The gas is allowed to expand to a volume 3.5 times the volume of state 1. It then follows a...
cooling a gas in a piston cylinder. if the boundary work of piston cylinder is compressed...
cooling a gas in a piston cylinder. if the boundary work of piston cylinder is compressed W = -10 kj determine if it is gained or lost by the gas.
b) Ethane gas at 1 bar and 25 oC is compressed adiabatically to 55 bar in...
b) Ethane gas at 1 bar and 25 oC is compressed adiabatically to 55 bar in a steady-state flow process for which W = 10 J mol-1. Assume ethane is ideal gas at its initial state and the residual enthalpy of the gas at its final state is - 3270 J/mol, and its heat capacity is constant (CP = 4.5 R), the temperature of ethane at the final state, i.e., after compression, is i. 403.3 oC; ii. 403.3 K; iii....
A piston–cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.1 m3....
A piston–cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.1 m3. The propane undergoes a process to a final pressure of 4 bar, during which the pressure–volume relationship is pV1.1 = constant. For the propane, evaluate the work and heat transfer, each in kJ. Kinetic and potential energy effects can be ignored.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT