Question

In: Advanced Math

Find the values of sin θ, cos θ, and tan θ for the given right triangle. Give the exact values.

Find the values of sin θ, cos θ, and tan θ for the given right triangle. Give the exact values.

 

Solutions

Expert Solution

since,

\(\sin \theta=\frac{\text { height }}{\text { hypotenuse }}\)

Where height of the triangle is that side which is opposite to the angle \(\theta\)

Hence,

\(\sin \theta=\sqrt{\frac{24}{25}}\)

 

since,

\(\cos \theta=\frac{\text { base }}{\text { hypotenuse }}\)

Where base of the triangle is that side on which the angle is inclined

Hence,

$$ \begin{aligned} \cos \theta &=\frac{\sqrt{25^{2}-24^{2}}}{25} \\ &=\frac{\sqrt{625-576}}{25} \\ &=\frac{\sqrt{49}}{25} \\ &=\frac{7}{25} \end{aligned} $$

 

since,

\(\tan \theta=\frac{\text { height }}{\text { base }}\)

Where height of the triangle is that side which is opposite to the angle \(\theta\) and base of the triangle

is that side on which the angle is inclined

Hence,

\(\tan \theta=\sqrt{\frac{24}{7}}\)

Related Solutions

Suppose θ is an acute angle in a right triangle. Given tan(θ)=1/5, evaluate: 1-sin^2(θ)
Suppose θ is an acute angle in a right triangle. Given tan(θ)=1/5, evaluate: 1-sin^2(θ)
3. Let g(θ) = 2 cos(θ) + sin(2θ) . Find the absolute maximum and minimum values...
3. Let g(θ) = 2 cos(θ) + sin(2θ) . Find the absolute maximum and minimum values of g on the interval [0, π/2]
Express sin 6θ as a polynomial in sin θ and cos θ.
Express sin 6θ as a polynomial in sin θ and cos θ.
Given H = (3R^2/ sin θ) aθ + 54 R cos θ aφ A/m (a) Find...
Given H = (3R^2/ sin θ) aθ + 54 R cos θ aφ A/m (a) Find J. (b) Find the total current in the aθ direction through the conical surface θ = 20◦, 0 ≤ φ ≤ 2π, 0 ≤ R ≤ 5 Please explain (b) thoroughly.
Find the values of the trigonometric functions of θ from the information given. cos(θ) = −3/11,...
Find the values of the trigonometric functions of θ from the information given. cos(θ) = −3/11,    tan(θ) < 0
1) Find the critical numbers of the function. f(θ) = 16 cos θ + 8 sin^2 θ
1) Find the critical numbers of the function.  f(θ) = 16 cos θ + 8 sin^2 θ θ=? 2) Find the absolute maximum and absolute minimum values of f on the given interval. f(x) = x/(x^2 − x + 9), [0, 9] 3) f(x) = 3x3 + 4x2 + 7x + 5,    a = 5 (f −1)'(a) = ?
If 3/(2+ cos θ+i sin θ) = a+ib, then [(a-2)2+b2] is
If 3/(2+ cos θ+i sin θ) = a+ib, then [(a-2)2+b2] is
Simplify. Do not give trig values. 1) 2 sin40 cos 40 2) 10 sin 18 cos...
Simplify. Do not give trig values. 1) 2 sin40 cos 40 2) 10 sin 18 cos 18 3) (tan 22)^2 4) 2 (cos 37)^2 - 1 5) (cos 29)^2 - 1 6) (sin 33)^2 + (cos 33)^2 7) (sin 38)^2 - (cos 38)^2 8) cos 67 cos 31 + sin 67 sin 31 9) cos 81 cos 53 - sin 81 sin 53 10) cos 46 / sin 46 11) sin 50 / cos 40 12) sin 44 cot 44...
a.)Find the length of the spiral r=θ for 0 ≤ θ ≤ 2 b.)Find the exact...
a.)Find the length of the spiral r=θ for 0 ≤ θ ≤ 2 b.)Find the exact length of the polar curve r=3sin(θ), 0 ≤ θ ≤ π/3 c.)Write each equation in polar coordinates. Express as a function of t. Assume that r>0. - y=(−9) r= - x^2+y^2=8 r= - x^2 + y^2 − 6x=0 r= -    x^2(x^2+y^2)=2y^2 r=
Find two values of θ that satisfy the given equation, where θ∈[0,2π], is measured in radians....
Find two values of θ that satisfy the given equation, where θ∈[0,2π], is measured in radians. •√3∗cosθ=2 • sin(−θ)=−√2/ 2 • sinθ∗cosθ=0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT