Problem 2 Statement: Let r1 = 1 + cos θ and r2 = 3 cos θ.
(a) Graph each function in the rθ-plane.
(b) Find all intersection points (both collision and
non-collision).
(c) Find the area common to the two graphs.
1) Find the critical numbers of the function.
f(θ) = 16 cos θ + 8 sin^2 θ
θ=?
2) Find the absolute maximum and absolute minimum values of f on the given interval.
f(x) = x/(x^2 − x + 9), [0, 9]
3) f(x) = 3x3 + 4x2 + 7x + 5, a = 5
(f −1)'(a) = ?
Find the absolute maximum and absolute minimum values of
f on the given interval.
f(x) = x3 − 5x + 8, [0, 3]
absolute minimum value
absolute maximum value
Find the absolute maximum and absolute minimum values of
f on the given interval.
f(x) = 4x3 −
6x2 − 144x +
5,
[−4, 5]
absolute minimum
absolute maximum