Question

In: Math

Create a Normally (Gaussian) distributed random variable1 X with a mean µ and standard deviation σ....

Create a Normally (Gaussian) distributed random variable1 X with a mean µ and standard deviation σ.

• [20] Create normally distributed 50 samples (Y) with µ and σ, and plot the samples.

• [20] Create normally distributed 5000 samples (X) with µ and σ, and (over) plot the samples.

• [20] Plot the histogram of random variable X and Y. Do not forget to normalize the histogram.

• [35] Plot the Gaussian PDF and its CDF function over the histogram of random variables Y and X.

Do not forget, interpreting the results is the key to properly learn!!

Solutions

Expert Solution


Related Solutions

1) Create a Normally (Gaussian) distributed random variable1 X with a mean µ and standard deviation...
1) Create a Normally (Gaussian) distributed random variable1 X with a mean µ and standard deviation σ. • Create normally distributed 50 samples (Y) with µ and σ, and plot the samples. • Create normally distributed 5000 samples (X) with µ and σ, and (over) plot the samples. • Plot the histogram of random variable X and Y. Do not forget to normalize the histogram. • Plot the Gaussian PDF and its CDF function over the histogram of random variables...
Assume that the random variable X is normally distributed, with mean μ=50 and standard deviation σ=7....
Assume that the random variable X is normally distributed, with mean μ=50 and standard deviation σ=7. compute the probability. P(57≤X≤66)
Part A: Suppose a random variable X have mean of µ and standard deviation σ. Let...
Part A: Suppose a random variable X have mean of µ and standard deviation σ. Let a and b be constants. i) Derive the expected value of aX + b. ii) Derive standard deviation of aX + b Part B: Suppose that in country A, the price of certain good has a mean of $100 and a variance of 25, in A-dollars. Country B has a fixed exchange rate with A so that it takes 2 B-dollars to buy 1...
The random variable x is normally distributed with a mean of 68 and a standard deviation...
The random variable x is normally distributed with a mean of 68 and a standard deviation of 4. Find the interquartile range (IQR)? Use R.
Let X be normally distributed with mean μ = 26 and standard deviation σ = 13....
Let X be normally distributed with mean μ = 26 and standard deviation σ = 13. [You may find it useful to reference the z table.] a. Find P(X ≤ 0). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 13). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(13 ≤ X ≤ 26). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 146 and standard deviation σ = 34....
Let X be normally distributed with mean μ = 146 and standard deviation σ = 34. [You may find it useful to reference the z table.] a. Find P(X ≤ 100). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(95 ≤ X ≤ 110). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find x such that P(X ≤ x) = 0.330. (Round "z" value and...
Let X be normally distributed with mean μ = 18 and standard deviation σ = 8....
Let X be normally distributed with mean μ = 18 and standard deviation σ = 8. [You may find it useful to reference the z table.] a. Find P(X ≤ 2). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 4). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(8 ≤ X ≤ 16). (Round "z" value to 2 decimal places and final...
et X be normally distributed with mean μ = 3.3 and standard deviation σ = 1.8....
et X be normally distributed with mean μ = 3.3 and standard deviation σ = 1.8. [You may find it useful to reference the z table.] a. Find P(X > 6.5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(5.5 ≤ X ≤ 7.5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find x such that P(X > x) = 0.0485. (Round "z" value and...
Let X be normally distributed with mean μ = 20 and standard deviation σ = 12....
Let X be normally distributed with mean μ = 20 and standard deviation σ = 12. [You may find it useful to reference the z table.] a. Find P(X ≤ 2). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(5 ≤ X ≤ 20). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 3,800 and standard deviation σ = 2,000....
Let X be normally distributed with mean μ = 3,800 and standard deviation σ = 2,000. [You may find it useful to reference the z table.] a. Find x such that P(X ≤ x) = 0.9382. (Round "z" value to 2 decimal places, and final answer to nearest whole number.) b. Find x such that P(X > x) = 0.025. (Round "z" value to 2 decimal places, and final answer to nearest whole number.) c. Find x such that P(3,800...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT