Question

In: Statistics and Probability

1) Create a Normally (Gaussian) distributed random variable1 X with a mean µ and standard deviation...

1) Create a Normally (Gaussian) distributed random variable1 X with a mean µ and standard deviation σ.

• Create normally distributed 50 samples (Y) with µ and σ, and plot the samples.

• Create normally distributed 5000 samples (X) with µ and σ, and (over) plot the samples.

• Plot the histogram of random variable X and Y. Do not forget to normalize the histogram.

• Plot the Gaussian PDF and its CDF function over the histogram of random variables Y and X.

 Do not forget, interpreting the results is the key to properly learn!!

Solutions

Expert Solution


Related Solutions

Create a Normally (Gaussian) distributed random variable1 X with a mean µ and standard deviation σ....
Create a Normally (Gaussian) distributed random variable1 X with a mean µ and standard deviation σ. • [20] Create normally distributed 50 samples (Y) with µ and σ, and plot the samples. • [20] Create normally distributed 5000 samples (X) with µ and σ, and (over) plot the samples. • [20] Plot the histogram of random variable X and Y. Do not forget to normalize the histogram. • [35] Plot the Gaussian PDF and its CDF function over the histogram...
The random variable x is normally distributed with a mean of 68 and a standard deviation...
The random variable x is normally distributed with a mean of 68 and a standard deviation of 4. Find the interquartile range (IQR)? Use R.
Suppose µ is the mean of a normally distributed population for which the standard deviation is...
Suppose µ is the mean of a normally distributed population for which the standard deviation is known to be 3.5. The hypotheses H0 : µ = 10 Ha : µ 6= 10 are to be tested using a random sample of size 25 from the population. The power of an 0.05 level test when µ = 12 is closest to
GRE math scores are normally distributed with a mean µ = 500 and standard deviation, ...
GRE math scores are normally distributed with a mean µ = 500 and standard deviation,  = 55. This year Howard University admitted 1500 graduate students. Calculate: a.   the number of students with test scores above 520, below 490, between 482 & 522 b.   how high a score is needed to be in the top 10%, top 5%?
1)If a variable X is normally distributed with a mean of 60 and a standard deviation...
1)If a variable X is normally distributed with a mean of 60 and a standard deviation of 15, what is P(X > 60) P(X > 75) P(X > 80) P(X < 50) P(45 < X < 75) P(X < 45)
Assume the random variable X is normally distributed with mean μ = 50 and standard deviation...
Assume the random variable X is normally distributed with mean μ = 50 and standard deviation σ = 7. Compute the probability. P(35<X<63)
A random variable is normally distributed with a mean of 24 and a standard deviation of...
A random variable is normally distributed with a mean of 24 and a standard deviation of 6. If an observation is randomly selected from the​ distribution, a. What value will be exceeded 5​% of the​ time? b. What value will be exceeded 90% of the​ time? c. Determine two values of which the smaller has 20% of the values below it and the larger has 20​% of the values above it. d. What value will 10​% of the observations be​...
(a) Assume a population’s quantitative data values are normally distributed with mean µ and standard deviation...
(a) Assume a population’s quantitative data values are normally distributed with mean µ and standard deviation σ, and samples are simple random. Sketch 3 sampling distributions of sample means of sample size n for n = 1, n = 100, and n = 10,000, using continuous normal distribution curves. The sketches are not meant to be quantitatively precise—you just need to illustrate certain phenomena that occur as n increases. State the mean, standard deviation, and area under the curve for...
If X is normally distributed with a mean of 30 and a standard deviation of 2,...
If X is normally distributed with a mean of 30 and a standard deviation of 2, find P(30 ≤ X ≤ 33.4). a) 0.455 b) 0.855 c) 0.955 d) 0.555 e) 0.755 f) None of the above
X is normally distributed with a mean of -9.74 and a standard deviation of 0.27. a....
X is normally distributed with a mean of -9.74 and a standard deviation of 0.27. a. Find the value of x that solves P(X ≤ x)= 0.25 b. Find the value of x that solves P(X > x)= 0.20 c. Find the value of x that solves P(x <X ≤ -9.70) = 0.20 d. Find the value of x that solves P(-9.74 < X ≤x) = 0.35
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT