Question

In: Statistics and Probability

The random variable x is normally distributed with a mean of 68 and a standard deviation...

The random variable x is normally distributed with a mean of 68 and a standard deviation of 4. Find the interquartile range (IQR)? Use R.

Solutions

Expert Solution

========================================CODE======================================

# First to find out Third Quartile with mean 68 and Standard deviation 4

Q3=qnorm(p = 0.75 ,mean = 68 ,sd = 4)     # Third Quartile
Q3

Q1=qnorm(p = 0.25 ,mean = 68 ,sd = 4) # First Quartile
Q1

IQR =Q3 -Q1                           # Inter quartile range
IQR

======================================OUTPUT========================================

> Q3=qnorm(p = 0.75 ,mean = 68 ,sd = 4) # Third Quartile
> Q3
[1] 70.69796
>
> Q1=qnorm(p = 0.25 ,mean = 68 ,sd = 4) # First Quartile
> Q1
[1] 65.30204
>
> IQR =Q3 -Q1                           # Inter quartile range
> IQR
[1] 5.395918


Related Solutions

A random variable is normally distributed with a mean of 24 and a standard deviation of...
A random variable is normally distributed with a mean of 24 and a standard deviation of 6. If an observation is randomly selected from the​ distribution, a. What value will be exceeded 5​% of the​ time? b. What value will be exceeded 90% of the​ time? c. Determine two values of which the smaller has 20% of the values below it and the larger has 20​% of the values above it. d. What value will 10​% of the observations be​...
Assume the random variable X is normally distributed with mean μ = 50 and standard deviation...
Assume the random variable X is normally distributed with mean μ = 50 and standard deviation σ = 7. Compute the probability. P(35<X<63)
The variable x is normally distributed with a mean of 500 and a standard deviation of...
The variable x is normally distributed with a mean of 500 and a standard deviation of 50. Find a) The 60th percentile. b)The 35th percentile. c)The x value which exceeds 80% of all x values. d)The x value that is exceeded by 80% of all x values.
A random variable is normally distributed. It has a mean of 245 and a standard deviation...
A random variable is normally distributed. It has a mean of 245 and a standard deviation of 21. a.) If you take a sample of size 10, can you say what the shape of the distribution for the sample mean is? Why? b.) For a sample of size 10, state the mean of the sample mean and the standard deviation of the sample mean. c.) For a sample of size 10, find the probability that the sample mean is more...
A random variable is normally distributed. It has a mean of 225 and a standard deviation...
A random variable is normally distributed. It has a mean of 225 and a standard deviation of 26. If you take a sample of size 11, can you say what the shape of the sampling distribution for the sample mean is? Why? If the sample size is 11, then you can't say anything about the sampling distribution of the sample mean, since the population of the random variable is not normally distributed and the sample size is less than 30....
A random variable is normally distributed. It has a mean of 245 and a standard deviation...
A random variable is normally distributed. It has a mean of 245 and a standard deviation of 21. I just need G. a.)If you take a sample of size 10, can you say what the shape of the distribution for the sample mean is? Why? b.) For a sample of size 10, state the mean of the sample mean and the standard deviation of the sample mean. c.) For a sample of size 10, find the probability that the sample...
A random variable is normally distributed. It has a mean of 245 and a standard deviation...
A random variable is normally distributed. It has a mean of 245 and a standard deviation of 21. e.) For a sample of size 35, state the mean of the sample mean and the standard deviation of the sample mean. f.) For a sample of size 35, find the probability that the sample mean is more than 241. g.) Compare your answers in part c and f. Why is one smaller than the other?
Assume that the random variable X normally distributed, with mean 90 and standard deviation 15. Compute...
Assume that the random variable X normally distributed, with mean 90 and standard deviation 15. Compute the probability P(X>102).
Suppose a random variable X is normally distributed with mean 65.9 and standard deviation 9.5. Answer...
Suppose a random variable X is normally distributed with mean 65.9 and standard deviation 9.5. Answer the following questions: P(42.15 < X < 77.30) = [round to 4 decimal places] Tries 0/5 P(X ≤ 73.50) = [round to 4 decimal places] Tries 0/5 P(X = 77.30) = [round to 4 decimal places] Tries 0/5 Suppose a is such that: P(X ≤ a) = 0.49. Then a = [round to 2 decimal places] Tries 0/5 What is the IQR (inter-quartle range)...
Suppose a random variable X is normally distributed with mean 65.3 and standard deviation 9.4. Answer...
Suppose a random variable X is normally distributed with mean 65.3 and standard deviation 9.4. Answer the following questions: 1. P(47.44 < X < 76.58) = [round to 4 decimal places] 2. P(X ≤ 46.50) = [round to 4 decimal places] 3. P(X = 76.58) = [round to 4 decimal places] 4. Suppose a is such that: P(X ≤ a) = 0.39. Then a = [round to 2 decimal places] 5. What is the IQR (inter-quartle range) of X? [round...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT