Question

In: Statistics and Probability

Consider a continuous random variable X with the probability density function f X ( x )...

Consider a continuous random variable X with the probability density function f X ( x ) = x/C , 3 ≤ x ≤ 7, zero elsewhere. Consider Y = g( X ) = 100/(x^2+1). Use cdf approach to find the cdf of Y, FY(y). Hint: F Y ( y ) = P( Y <y ) = P( g( X ) <y ) =

Solutions

Expert Solution

fX(x)=x/c ,3 x 7 ,zero elsewhere

first we find value of c ;

  

as 20/c=1 => c=20

Now we find range of Y-

3x7

9x^249 squaring both sides

10x^2+150 adding 1 to each

1/501/(x2+1)1/10 taking reciprocal

2100/(x^2+!)10 multiplying by 100

hence 2g(x)10.or 2Y10

Now find CDF

FY(y)=P(Yy)

=P(100/x^2+1 y) = P(100/y x^2+1) [as both y and (x^2+1) is positive ]

= P[(100/y)-1x^2] [take 1 on the other side]

= P[((100-y)/y)^1/2x [here x is positive so we do not have to worry about negative values of x]

= [take 1/2 outside and put limits]

=     

we have already found the range of Y i.e 2Y10.


Related Solutions

2 Consider the probability density function (p.d.f) of a continuous random variable X: f(x) = (...
2 Consider the probability density function (p.d.f) of a continuous random variable X: f(x) = ( k x3 , 0 < x < 1, 0, elsewhere, where k is a constant. (a) Find k. (b) Compute the cumulative distribution function F(x) of X. (c) Evaluate P(0.1 < X < 0.8). (d) Compute µX = E(X) and σX.
Assume that a continuous random variable has a following probability density function: f ( x )...
Assume that a continuous random variable has a following probability density function: f ( x ) = { 1 10 x 4 2 ≤ x ≤ 2.414 0 o t h e r w i s e Use this information and answer questions 3a to 3g. Question a: Which of the following is a valid cumulative density function for the defined region ( 2 ≤ x ≤ 2.414)?    A.F x ( x ) = 1 50 x 5 −...
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x)....
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x). Explain the following issues using diagram (Graphs) a) Relationship between f(x) and F(x) for a continuous variable, b) explaining how a uniform random variable can be used to simulate X via the cumulative distribution function of X, or c) explaining the effect of transformation on a discrete and/or continuous random variable
The probability density function of the continuous random variable X is given by fX (x) =...
The probability density function of the continuous random variable X is given by fX (x) = kx, (0 <= x <2) = k (4-x), (2 <= x <4) = 0, (otherwise) 1) Find the value of k 2)Find the mean of m 3)Find the Dispersion σ² 4)Find the value of Cumulative distribution function FX(x)
A continuous probability density function (PDF) f ( X ) describes the distribution of continuous random...
A continuous probability density function (PDF) f ( X ) describes the distribution of continuous random variable X . Explain in words, and words only, this property: P ( x a < X < x b ) = P ( x a ≤ X ≤ x b )
If a continuous random process has a probability density function f(x) = a + bx, for...
If a continuous random process has a probability density function f(x) = a + bx, for 0 < x < 5, where a and b are constants, and P(X > 3) = 0.3 Determine: The values of a and b. The cumulative distribution function F(x) P(X < 2) P(2 < X < 4)
If a continuous random process has a probability density function f(x) = a + bx, for...
If a continuous random process has a probability density function f(x) = a + bx, for 0 < x < 5, where a and b are constants, and P(X > 3) = 0.3 Determine: The values of a and b. The cumulative distribution function F(x) P(X < 2) P(2 < X < 4)
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1...
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1                            for 0 < x < 1, x < y < x + 1. What is the marginal density of X and Y? Use this to compute Var(X) and Var(Y) Compute the expectation E[XY] Use the previous results to compute the correlation Corr (Y, X) Compute the third moment of Y, i.e., E[Y3]
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1...
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1 for 0 < x < 1, x < y < x + 1. A. What is the marginal density of X and Y ? Use this to compute Var(X) and Var(Y). B. Compute the expectation E[XY] C. Use the previous results to compute the correlation Corr(Y, X). D. Compute the third moment of Y , i.e., E[Y3].
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e −x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT