Question

In: Statistics and Probability

Let X be a continuous random variable with a probability density function fX (x) = 2xI...

Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e −x

a. Find the expression for the probability density function fY (y).

b. Find the domain of the probability density function fY (y).

Solutions

Expert Solution

Here we can use the variable transformation technique to solve the question.

(a)Here we can use the variable transformation method. Given that the random variable X follows the distribution with pdf,

or .

We want to find out the distribution of .

Since is a monotonically decreasing in x hence we can use the variable transformation technique. The pdf of Y is

Since

Therefore

Therefore

, ( The domain is obtained from part (b))

(b) The domain of Y can be compute directly from domain of X. The domain of X is 0<x<1. The transformation is . The domain of Y is,

and

Hence the domain of Y is


Related Solutions

The probability density function of the continuous random variable X is given by fX (x) =...
The probability density function of the continuous random variable X is given by fX (x) = kx, (0 <= x <2) = k (4-x), (2 <= x <4) = 0, (otherwise) 1) Find the value of k 2)Find the mean of m 3)Find the Dispersion σ² 4)Find the value of Cumulative distribution function FX(x)
1. Let X be a random variable with probability density function fX given by fX(x) =...
1. Let X be a random variable with probability density function fX given by fX(x) = γαγ/ (x + α)^γ+1 , x ≥ 0, 0, x < 0, where α > 0 and γ > 0. (a) Find the cumulative distribution function (cdf) FX of X. (b) Let Y = log(X+α /α) . Find the cdf of Y and identify the distribution. (c) How could a realisation of X be generated from an R(0,1) random number generator? (d) Let Z...
The probability density function of the random variable X is given by fX(x) = ax +...
The probability density function of the random variable X is given by fX(x) = ax + 2/9 if 1/2 ≤ x ≤ 3, and 0 otherwise. (a) Compute the value of a. (b) Let the random variable Y be defined as Y = [X], where [·] is the “round down” operator (that is, for example, [2.5] = 2, [−2.5] = −3, [−3] = −3). Find the probability mass function of Y . (Hint: For Y to take value k, what...
[25 pts] The probability density function of a random variable X is fX(x) = ce^ -|x|...
[25 pts] The probability density function of a random variable X is fX(x) = ce^ -|x| for all values of x, where c is a constant. Find the value of c and the cumulative distribution function of X.
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x)....
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x). Explain the following issues using diagram (Graphs) a) Relationship between f(x) and F(x) for a continuous variable, b) explaining how a uniform random variable can be used to simulate X via the cumulative distribution function of X, or c) explaining the effect of transformation on a discrete and/or continuous random variable
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = x/C , 3 ≤ x ≤ 7, zero elsewhere. Consider Y = g( X ) = 100/(x^2+1). Use cdf approach to find the cdf of Y, FY(y). Hint: F Y ( y ) = P( Y <y ) = P( g( X ) <y ) =
. Let X and Y be a random variables with the joint probability density function fX,Y...
. Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { 1, 0 < x, y < 1 0, otherwise } . a. Let W = max(X, Y ) Compute the probability density function of W. b. Let U = min(X, Y ) Compute the probability density function of U. c. Compute the probability density function of X + Y ..
If a random variable X has a beta distribution, its probability density function is fX (x)...
If a random variable X has a beta distribution, its probability density function is fX (x) = 1 xα−1(1 − x)β−1 B(α,β) for x between 0 and 1 inclusive. The pdf is zero outside of [0,1]. The B() in the denominator is the beta function, given by beta(a,b) in R. Write your own version of dbeta() using the beta pdf formula given above. Call your function mydbeta(). Your function can be simpler than dbeta(): use only three arguments (x, shape1,...
If a random variable X has a beta distribution, its probability density function is fX (x)...
If a random variable X has a beta distribution, its probability density function is fX (x) = 1 xα−1(1 − x)β−1 B(α,β) for x between 0 and 1 inclusive. The pdf is zero outside of [0,1]. The B() in the denominator is the beta function, given by beta(a,b) in R. Write your own version of dbeta() using the beta pdf formula given above. Call your function mydbeta(). Your function can be simpler than dbeta(): use only three arguments (x, shape1,...
If a random variable X has a beta distribution, its probability density function is fX (x)...
If a random variable X has a beta distribution, its probability density function is fX (x) = 1 xα−1(1 − x)β−1 B(α,β) for x between 0 and 1 inclusive. The pdf is zero outside of [0,1]. The B() in the denominator is the beta function, given by beta(a,b) in R. Write your own version of dbeta() using the beta pdf formula given above. Call your function mydbeta(). Your function can be simpler than dbeta(): use only three arguments (x, shape1,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT