In: Computer Science
Illustrate some case studies where Decision Support System can be applied?
DECISION SUPPORT SYSTEMS IN PORTFOLIO MANAGEMENT
The concept of decision support systems (DSS) was introduced, from a theoretical point of view, in the late 1960s. DSS can be defined as computer information systems that provide information in a specific problem domain using analytical decision models and techniques, as well as access to databases, in order to support a decision maker in making decisions effectively in complex and ill-structured problems. Thus, the basic goal of DSS is to provide the necessary information to the decision-maker in order to help him or her get a better understanding of the decision environment and the alternatives available.
A typical structure of a DSS includes three main parts: the database, the model base, and the user interface. The database includes all the information and data that are necessary to perform the analysis on the decision problem at hand. Data entry, storage, and retrieval are performed through a database management system. The model base is an arsenal of methods, techniques, and models that can be used to perform the analysis and support the decision maker. These models or techniques are applied to the raw data in order to produce analysis or more meaningful output for the decision maker. A model base management system is responsible for performing all tasks that are related to model management, such as model development, updates, storage, and retrieval. Finally, the user interface is responsible for the communication between the user and the system, while it further serves as a link between the database and the model base. The appropriate design of the user interface is a key issue towards the successful implementation of the whole system, so as to ensure that the user can take full advantage of the analytical capabilities that the system provides. Advances in computer hardware and software have enabled user-friendly graphical user interfaces (GUIs) to serve this function.
During the last four decades, DSS have been developed and implemented to tackle a variety of real world decision-making problems, in addition to financial problems and portfolio management. The portfolio management process involves the analysis of a vast volume of information and data, including financial, stock market, and macroeconomic data. Analyzing a continuous flow of such a vast amount of information for every available security in order to make real time portfolio management decisions is clearly impossible without the support of a specifically designed computer system that will facilitate not only the data management process, but also the analysis.
Thus, the contribution of DSS to portfolio management becomes apparent. They provide an integrated tool to perform real-time analyses of portfolio-management-related data, and provide information according to the decision-maker's preferences. Furthermore, they enable the decision maker to take full advantage of sophisticated analytic methods, including multivariate statistical and econometric techniques, powerful optimization methods, advanced preference modeling, and multiple-criteria decision-making techniques. DSS incorporating multiple-criteria decision-making methods in their structure are known as multicriteria DSS, and they have found several applications in the field of finance.
PORTFOLIO MANAGEMENT DSS IN PRACTICE: AN ILLUSTRATION OF THE INVESTOR SYSTEM
The Investor system is a DSS designed and developed to support the portfolio management process and to help construct portfolios of stocks. The system includes a combination of portfolio theory models, multivariate statistical methods, and multiple criteria decision-making techniques for stock evaluation and portfolio construction.
Financial Data. The database of the system includes four types of information and data. The first involves the financial statements of the firms whose stocks are considered in the portfolio management problem. The balance sheet and the income statement provide valuable information regarding the financial soundness of the firms (e.g., sales, net profit, net worth, liabilities, assets, etc.). The system contains such financial data spanning a five-year period, so that users can reach informed conclusions about the firms' financial evolution.
Qualitative Information. In addition to these financial data, information on some qualitative factors is also inserted in the database. The management of the firms, their organization, their reputation in the market, their technical facilities, and their market position affect directly the operation and the performance of the firms; thus, they constitute fundamental factors in the analysis of the firms whose stocks are considered in the portfolio management problem.
Market Data. The third type of information included in the database involves the stocks' market histories. This information involves the stock prices, the marketability of the stocks, their beta (b) coefficient (a measure of risk representing the relationship between the changes in the price of individual stocks with the changes in the market), the dividend yield, the price/earnings ratio, and so forth.
Macroeconomic Data. Finally, information regarding the macroeconomic environment is also included. Inflation, interest rates, exchange rates, and other macroeconomic variables have a direct impact on the performance of the stock market, thus potentially affecting any individual stock. The combination of this information with the financial and stock histories of individual firms enables portfolio managers to perform a global evaluation of the investment opportunities available, both in terms of their sensitivity and risk with respect to the economic environment, and to their individual characteristics.
Analysis Tools. The analysis of all this information is performed through the tools incorporated in the system's model base. Two major components can be distinguished
In the model base. The first one consists of financial and stock market analysis tools. These can analyze the structure of the financial statements of the firms, calculate financial and stock market ratios, apply well-known portfolio theory models (e.g., the market model, the CAPM, the APT), and present several graphical summaries of the results obtained through these tools to facilitate drawing some initial conclusions about the stocks' performance.
The second component of the model base involves more sophisticated analysis tools, including statistical and multiple-criteria decision-making techniques. More specifically, univariate statistical techniques are used to measure the stability of the beta coefficient of the stocks, while principal components analysis (a multivariate technique) is used to identify the most significant factors or criteria that describe the performance of the stocks, and to place the stocks into homogeneous groups according to their financial and stock market characteristics. The criteria identified as most crucial can be used to evaluate the stocks and thereby construct a portfolio that meets the investment policy of the investor/portfolio manager. Of course, the portfolio manager interacts with the system, and he or she can also introduce into the analysis the evaluation criteria that he or she considers important, even if these criteria are not found significant by principal components analysis.
The evaluation of the stocks' performance is completed through multiple-criteria decision-making methods. Multiple-criteria decision-making is an advanced field of operations research that provides an arsenal of methodological tools and techniques to study real-world decision problems involving multiple criteria that often lead to conflicting results. The multiple-criteria decision-making methods that are incorporated in the model base of the investor system enable the investor to develop an additive utility function that is fairly consistent with his or her investment policy, preferences, and experience. On the basis of this additive utility function a score (global utility) is estimated for each stock that represents its overall performance with respect to the selected evaluation criteria. The scores of the stocks are used as an index so they may be placed into appropriate classes specified by the user. Thus, the portfolio manager can develop an evaluation model (additive utility function) to distinguish, for instance, among the stocks that constitute the best investment opportunities, the stocks that do not have a medium-long term prospect but they can be considered only for the short run, and the stocks that are too risky and should be avoided. Of course, any other classification can be determined according to the objectives and the policy of the portfolio manager.
On the basis of this classification, the investor/portfolio manager can select a limited number of stocks to include in the actual portfolio, which represent the best investment opportunities. Constructing the portfolio is accomplished through multiple-criteria decision-making