Question

In: Advanced Math

Find y as a function of x if y''''−4y'''+4y''=−128e^{-2x} y(0)=2,  y′(0)=9,  y″(0)=−4,  y‴(0)=16. y(x)=?

Find y as a function of x if

y''''−4y'''+4y''=−128e^{-2x}

y(0)=2,  y′(0)=9,  y″(0)=−4,  y‴(0)=16.
y(x)=?

Solutions

Expert Solution


Related Solutions

Find y as a function of x if y(4)−12y‴+36y″=−512e-2x y(0)=−1,  y′(0)=10,  y″(0)=28,  y‴(0)=16 y(x)=
Find y as a function of x if y(4)−12y‴+36y″=−512e-2x y(0)=−1,  y′(0)=10,  y″(0)=28,  y‴(0)=16 y(x)=
Find the green's function then find the solution y"+4y=x y(0)=0, y'(1)=0
Find the green's function then find the solution y"+4y=x y(0)=0, y'(1)=0
Consider the function f(x, y) = 4xy − 2x 4 − y 2 . (a) Find...
Consider the function f(x, y) = 4xy − 2x 4 − y 2 . (a) Find the critical points of f. (b) Use the second partials test to classify the critical points. (c) Show that f does not have a global minimum.
Find the green's function and fine the solution y"+4y=x y(0)=0, y'(1)=0
Find the green's function and fine the solution y"+4y=x y(0)=0, y'(1)=0
Find y as a function of x if y′′′−11y′′+30y′=0 y(0)=7,  y′(0)=9,  y′′(0)=4.
Find y as a function of x if y′′′−11y′′+30y′=0 y(0)=7,  y′(0)=9,  y′′(0)=4.
Find a particular solution to y′′+4y′+4y=(e^−2x)/x^4 using variation of parameters yp= ?
Find a particular solution to y′′+4y′+4y=(e^−2x)/x^4 using variation of parameters yp= ?
The function f(x, y) = 10−x 2−4y 2+2x has one critical point. Find that critical point...
The function f(x, y) = 10−x 2−4y 2+2x has one critical point. Find that critical point and show that it is not a saddle point. Indicate whether this critical point is a maximum or a minimum, and find that maximum or minimum value.
Find y as a function of x if y^(4)−6y′′′+9y′′=0, y(0)=7, y′(0)=11, y′′(0)=9, y′′′(0)=0.
Find y as a function of x if y^(4)−6y′′′+9y′′=0, y(0)=7, y′(0)=11, y′′(0)=9, y′′′(0)=0.
Find x/y given 2x + y = 35 and 3x + 4y = 65?
Find \( \frac{x}{y} \) given 2x + y = 35 and 3x + 4y = 65?
A) Solve the initial value problem: 8x−4y√(x^2+1) * dy/dx=0 y(0)=−8 y(x)= B)  Find the function y=y(x) (for...
A) Solve the initial value problem: 8x−4y√(x^2+1) * dy/dx=0 y(0)=−8 y(x)= B)  Find the function y=y(x) (for x>0 ) which satisfies the separable differential equation dy/dx=(10+16x)/xy^2 ; x>0 with the initial condition y(1)=2 y= C) Find the solution to the differential equation dy/dt=0.2(y−150) if y=30 when t=0 y=
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT