Question

In: Advanced Math

y″+9y′=162sin(9t)+324cos(9t) y(0)=7 y'(0)=7

y″+9y′=162sin(9t)+324cos(9t)

y(0)=7

y'(0)=7

Solutions

Expert Solution


Related Solutions

solve differential equation. y" + 9y = 18t^2 + 9t + 1 ; y(0) = 5/3...
solve differential equation. y" + 9y = 18t^2 + 9t + 1 ; y(0) = 5/3 ; y'(0) = 10
Find y as a function of x if y^(4)−6y′′′+9y′′=0, y(0)=7, y′(0)=11, y′′(0)=9, y′′′(0)=0.
Find y as a function of x if y^(4)−6y′′′+9y′′=0, y(0)=7, y′(0)=11, y′′(0)=9, y′′′(0)=0.
Find y as a function of t if 100y′′−9y=0100y″−9y=0 with y(0)=3,y′(0)=8.
Find y as a function of t if 100y′′−9y=0100y″−9y=0 with y(0)=3,y′(0)=8.
y"´-9y"+26y´-24y=1 y(0)=y´(0)=y"(0)=1
y"´-9y"+26y´-24y=1 y(0)=y´(0)=y"(0)=1
(1 point) Find yy as a function of xx if y‴+9y′=0,y‴+9y′=0, y(0)=−2,  y′(0)=24,  y″(0)=−18.y(0)=−2,  y′(0)=24,  y″(0)=−18. y(x)= ?
(1 point) Find yy as a function of xx if y‴+9y′=0,y‴+9y′=0, y(0)=−2,  y′(0)=24,  y″(0)=−18.y(0)=−2,  y′(0)=24,  y″(0)=−18. y(x)= ?
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
find the general solution of the given differential equation. 1. y''+2y'−3y=0 2.  6y''−y'−y=0 3.  y''+5y' =0 4.  y''−9y'+9y=0
find the general solution of the given differential equation. 1. y''+2y'−3y=0 2.  6y''−y'−y=0 3.  y''+5y' =0 4.  y''−9y'+9y=0
u''-2u'-8u=0 u(0)= α, u'(0)=2π y''+9y'=cosπt, y(0)=0, y'(0)=1
u''-2u'-8u=0 u(0)= α, u'(0)=2π y''+9y'=cosπt, y(0)=0, y'(0)=1
solve this IVP 9y'' +33.33y' +464.21y=8sin(t/4), y(0)=0, y'(0)=.04
solve this IVP 9y'' +33.33y' +464.21y=8sin(t/4), y(0)=0, y'(0)=.04
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT