Question

In: Advanced Math

Find the general solution of the ODE: y'' − 6y' + 9y = (1 + x^2)e^2x...

Find the general solution of the ODE:

y'' − 6y' + 9y = (1 + x^2)e^2x .

Solutions

Expert Solution


Related Solutions

1. Find the general solution to the following ODE: y′′′+ 4y′= sec(2x) 2. Find the solution...
1. Find the general solution to the following ODE: y′′′+ 4y′= sec(2x) 2. Find the solution to the following IVP: 2y′′+ 2y′−2y= 6x2−4x−1 y(0) = −32 y′(0) = 5 3. Verify that y1=x1/2ln(x) is a solution to 4x2y′′+y= 0, and use reduction of order to find a second solution y2. 4. Find the general solutions to the following ODEs: a) y′′′−y′= 0. b) y′′+ 2y′+y= 0. c) y′′−4y′+ 13y= 0.
find the general solution 2xy^3+e^x+(3x^2y^2+siny)y'=0 xy'=6y+12x^4y^(2/3) (2x+1)y'+y=(2x+1)^(3/2)
find the general solution 2xy^3+e^x+(3x^2y^2+siny)y'=0 xy'=6y+12x^4y^(2/3) (2x+1)y'+y=(2x+1)^(3/2)
. Find the general solution to the ODE: x^2 y" + 5xy' + 3y = x^2
. Find the general solution to the ODE: x^2 y" + 5xy' + 3y = x^2
Find a particular solution to y''+6y'+9y=(-18.5e^(-3t))/(t^2+1)
Find a particular solution to y''+6y'+9y=(-18.5e^(-3t))/(t^2+1)
Find the general solution to the differential equation below. y′′ − 6y′ + 9y = 24t−5e3...
Find the general solution to the differential equation below. y′′ − 6y′ + 9y = 24t−5e3 Calculate the inverse Laplace transform of ((3s-2) e^(-5s))/(s^2+4s+53) Calculate the Laplace transform of y = cosh(at) using the integral definition of the Laplace transform. Be sure to note any restrictionson the domain of s. Recall that cosh(t) =(e^t+e^(-t))/2
Find the general solution to the ODE y'' − y'/x − 4x^2y = x^2 sinh(x^2)
Find the general solution to the ODE y'' − y'/x − 4x^2y = x^2 sinh(x^2)
Find the general solution of the following ODE: y''x^2 − 3xy' + 3y = 2/x ,...
Find the general solution of the following ODE: y''x^2 − 3xy' + 3y = 2/x , for x > 0.
Find a general solution of the following equations: A. y′′′ +6y′′ +11y′ +6y = −e^-t B....
Find a general solution of the following equations: A. y′′′ +6y′′ +11y′ +6y = −e^-t B. y′′′ + y′ = t.
Second order Differential equation: Find the general solution to [ y'' + 6y' +8y = 3e^(-2x)...
Second order Differential equation: Find the general solution to [ y'' + 6y' +8y = 3e^(-2x) + 2x ] using annihilators method and undetermined coeficients.
Find a particular solution of y'' + 2y' + y = e-x [ ( 5 −2x...
Find a particular solution of y'' + 2y' + y = e-x [ ( 5 −2x )cos(x) − ( 3 + 3x )sin(x) ] yp( x ) = ? Please show your work step by step. Thank you!
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT